Your browser doesn't support javascript.
loading
Ilimaquinone Induces the Apoptotic Cell Death of Cancer Cells by Reducing Pyruvate Dehydrogenase Kinase 1 Activity.
Kwak, Choong-Hwan; Jin, Ling; Han, Jung Ho; Han, Chang Woo; Kim, Eonmi; Cho, MyoungLae; Chung, Tae-Wook; Bae, Sung-Jin; Jang, Se Bok; Ha, Ki-Tae.
Afiliação
  • Kwak CH; Korean Medical Research Center for Healthy Aging School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea.
  • Jin L; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea.
  • Han JH; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea.
  • Han CW; Department of Molecular Biology, College of Natural Sciences, Pusan National University, Geumjung-gu, Busan 46241, Korea.
  • Kim E; National Institute for Korean Medicine Development, Gyeongsan, Gyeongbuk 38540, Korea.
  • Cho M; National Institute for Korean Medicine Development, Gyeongsan, Gyeongbuk 38540, Korea.
  • Chung TW; Korean Medical Research Center for Healthy Aging School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea.
  • Bae SJ; Korean Medical Research Center for Healthy Aging School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea.
  • Jang SB; Department of Molecular Biology, College of Natural Sciences, Pusan National University, Geumjung-gu, Busan 46241, Korea.
  • Ha KT; Korean Medical Research Center for Healthy Aging School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea.
Int J Mol Sci ; 21(17)2020 Aug 21.
Article em En | MEDLINE | ID: mdl-32825675
ABSTRACT
In cancer cells, aerobic glycolysis rather than oxidative phosphorylation (OxPhos) is generally preferred for the production of ATP. In many cancers, highly expressed pyruvate dehydrogenase kinase 1 (PDK1) reduces the activity of pyruvate dehydrogenase (PDH) by inducing the phosphorylation of its E1α subunit (PDHA1) and subsequently, shifts the energy metabolism from OxPhos to aerobic glycolysis. Thus, PDK1 has been regarded as a target for anticancer treatment. Here, we report that ilimaquinone (IQ), a sesquiterpene quinone isolated from the marine sponge Smenospongia cerebriformis, might be a novel PDK1 inhibitor. IQ decreased the cell viability of human and murine cancer cells, such as A549, DLD-1, RKO, and LLC cells. The phosphorylation of PDHA1, the substrate of PDK1, was reduced by IQ in the A549 cells. IQ decreased the levels of secretory lactate and increased oxygen consumption. The anticancer effect of IQ was markedly reduced in PDHA1-knockout cells. Computational simulation and biochemical assay revealed that IQ interfered with the ATP binding pocket of PDK1 without affecting the interaction of PDK1 and the E2 subunit of the PDH complex. In addition, similar to other pyruvate dehydrogenase kinase inhibitors, IQ induced the generation of mitochondrial reactive oxygen species (ROS) and depolarized the mitochondrial membrane potential in the A549 cells. The apoptotic cell death induced by IQ treatment was rescued in the presence of MitoTEMPO, a mitochondrial ROS inhibitor. In conclusion, we suggest that IQ might be a novel candidate for anticancer therapeutics that act via the inhibition of PDK1 activity.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Quinonas / Sesquiterpenos / Apoptose / Piruvato Desidrogenase Quinase de Transferência de Acetil / Antineoplásicos Limite: Animals / Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Quinonas / Sesquiterpenos / Apoptose / Piruvato Desidrogenase Quinase de Transferência de Acetil / Antineoplásicos Limite: Animals / Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article