Your browser doesn't support javascript.
loading
Tunable Synthesis of Hierarchical Yolk/Double-Shelled SiOx @TiO2 @C Nanospheres for High-Performance Lithium-Ion Batteries.
Gong, Qinghua; Wang, Haiqing; Song, Wenhua; Sun, Bin; Cao, Pei; Gu, Shaonan; Sun, Xuefeng; Zhou, Guowei.
Afiliação
  • Gong Q; Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P. R. China.
  • Wang H; Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P. R. China.
  • Song W; Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P. R. China.
  • Sun B; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.
  • Cao P; Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P. R. China.
  • Gu S; Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P. R. China.
  • Sun X; Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P. R. China.
  • Zhou G; Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, P. R. China.
Chemistry ; 27(8): 2654-2661, 2021 Feb 05.
Article em En | MEDLINE | ID: mdl-32866338
This work reports the preparation of unique hierarchical yolk/double-shelled SiOx @TiO2 @C nanospheres with different voids by a facile sol-gel method combined with carbon coating. In the preparation process, SiOx nanosphere is used as a hard template. Etch time of SiOx yolk affects the morphology and electrochemical performance of SiOx @TiO2 @C. With the increase in etch time, the yolk/double-shelled SiOx @TiO2 @C with 15 and 30 nm voids and the TiO2 @C hollow nanospheres are obtained. The yolk/double-shelled SiOx @TiO2 @C nanospheres exhibit remarkable lithium-ion battery performance as anodes, including high lithium storage capacity, outstanding rate capability, good reversibility, and stable long-term cycle life. The unique structure can accommodate the large volume change of the SiOx yolk, provide a unique buffering space for the discharge/charge processes, improve the structural stability of the electrode material during repeated Li+ intercalation/deintercalation processes, and enhance the cycling stability. The SiOx @TiO2 @C with 30 nm void space exhibits a high discharge specific capacity of ≈1195.4 mA h g-1 at the current density of 0.1 A g-1 after 300 cycles and ≈701.1 mA h g-1 at 1 A g-1 for over 800 cycles. These results suggest that the proposed particle architecture is promising and may have potential applications in improving various high performance anode materials.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article