Dual Biochemically Breakable Drug Carriers from Programmed Telechelic Homopolymers.
Biomacromolecules
; 21(10): 4313-4325, 2020 10 12.
Article
em En
| MEDLINE
| ID: mdl-32897693
Well-defined hydrophilic telechelic dibromo poly(triethylene glycol monomethyl ether acrylate)s were prepared by single-electron transfer living radical polymerization employing a hydrophobic difunctional initiator containing acetal and disulfide linkages. Although the resulting homopolymers have low hydrophobic contents (<8.5 wt % of the entire structure), they are able to self-assemble in water into nanoscale micellelike particles via chain folding. Acetal and disulfide linkages were demonstrated to be "keystone" units for their dual stimuli-responsive behavior under biochemically relevant conditions. Their site-selective middle-chain cleavage under both acidic pH and reductive conditions splits the homopolymer into two equal-sized fragments and results in the breakdown of the nanoassemblies. The drug loading/delivery potential of these nanoparticles was investigated using curcumine combining in vitro drug release, cytotoxicity, and cellular uptake studies with human cancer cell lines (HT-29 and HeLa). Importantly, this strategy may be extended to prepare innovative nanoplatforms based on hydrophilic homopolymers or random copolymers for intelligent drug delivery.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Portadores de Fármacos
/
Nanopartículas
Limite:
Humans
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article