Your browser doesn't support javascript.
loading
Mechanical force-induced morphology changes in a human fungal pathogen.
Puerner, Charles; Kukhaleishvili, Nino; Thomson, Darren; Schaub, Sebastien; Noblin, Xavier; Seminara, Agnese; Bassilana, Martine; Arkowitz, Robert A.
Afiliação
  • Puerner C; Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.
  • Kukhaleishvili N; Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.
  • Thomson D; Université Côte d'Azur, CNRS, Institute Physics of Nice (INPHYNI), Ave. J. Vallot, Nice, France.
  • Schaub S; Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.
  • Noblin X; Present Address: Manchester Fungal Infection Group, School of Biological Sciences, University of Manchester, Manchester, UK.
  • Seminara A; Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.
  • Bassilana M; Present Address: Sorbonne University, CNRS, Developmental Biology Laboratory (LBDV), Villefranche-sur-mer, France.
  • Arkowitz RA; Université Côte d'Azur, CNRS, Institute Physics of Nice (INPHYNI), Ave. J. Vallot, Nice, France. xavier.noblin@unice.fr.
BMC Biol ; 18(1): 122, 2020 09 11.
Article em En | MEDLINE | ID: mdl-32912212
ABSTRACT

BACKGROUND:

The initial step of a number of human or plant fungal infections requires active penetration of host tissue. For example, active penetration of intestinal epithelia by Candida albicans is critical for dissemination from the gut into the bloodstream. However, little is known about how this fungal pathogen copes with resistive forces upon host cell invasion.

RESULTS:

In the present study, we have used PDMS micro-fabrication to probe the ability of filamentous C. albicans cells to penetrate and grow invasively in substrates of different stiffness. We show that there is a threshold for penetration that corresponds to a stiffness of ~ 200 kPa and that invasive growth within a stiff substrate is characterized by dramatic filament buckling, along with a stiffness-dependent decrease in extension rate. We observed a striking alteration in cell morphology, i.e., reduced cell compartment length and increased diameter during invasive growth, that is not due to depolarization of active Cdc42, but rather occurs at a substantial distance from the site of growth as a result of mechanical compression.

CONCLUSIONS:

Our data reveal that in response to this compression, active Cdc42 levels are increased at the apex, whereas active Rho1 becomes depolarized, similar to that observed in membrane protrusions. Our results show that cell growth and morphology are altered during invasive growth, suggesting stiffness dictates the host cells that C. albicans can penetrate.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Candida albicans / Adaptação Biológica / Interações Hospedeiro-Patógeno Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Candida albicans / Adaptação Biológica / Interações Hospedeiro-Patógeno Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article