Your browser doesn't support javascript.
loading
Enhanced accumulation of reduced glutathione by Scopoletin improves survivability of dopaminergic neurons in Parkinson's model.
Pradhan, Priyadarshika; Majhi, Olivia; Biswas, Abhijit; Joshi, Vinod Kumar; Sinha, Devanjan.
Afiliação
  • Pradhan P; Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
  • Majhi O; Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
  • Biswas A; Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
  • Joshi VK; Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
  • Sinha D; Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. devanjan@bhu.ac.in.
Cell Death Dis ; 11(9): 739, 2020 09 10.
Article em En | MEDLINE | ID: mdl-32913179
ABSTRACT
Parkinson's disease (PD) is a neuromotor disorder, primarily manifested by motor anomalies due to progressive loss of dopaminergic neurons. Although alterations in genetic factors have been linked with its etiology, exponential accumulation of environmental entities such as reactive oxygen species (ROS) initiate a cyclic chain reaction resulting in accumulation of cellular inclusions, dysfunctional mitochondria, and overwhelming of antioxidant machinery, thus accelerating disease pathogenesis. Involvement of oxidative stress in PD is further substantiated through ROS induced Parkinsonian models and elevated oxidative markers in clinical PD samples; thereby, making modulation of neuronal oxidative load as one of the major approaches in management of PD. Here we have found a potent antioxidant moiety Scopoletin (Sp), a common derivative in most of the nootropic herbs, with robust neuroprotective ability. Sp increased cellular resistance to ROS through efficient recycling of GSH to prevent oxidative damage. The Sp treated cells showed higher loads of reduced glutathione making them resistant to perturbation of antioxidant machinery or neurotoxin MPP+. Sp could restore the redox balance, mitochondrial function, and prevented oxidative damage, leading to recovery of dopaminergic neural networks and motion abilities in Drosophila genetic model of PD. Our data also suggest that Sp, in combination increases the therapeutic potency of L-DOPA by mitigating its chronic toxicity. Together, we highlight the possible ability of Sp in preventing oxidative stress mediated loss of dopaminergic neurons and at the same time enhance the efficacy of dopamine recharging regimens.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Escopoletina / Dopamina / Drosophila / Glutationa Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Escopoletina / Dopamina / Drosophila / Glutationa Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article