Your browser doesn't support javascript.
loading
Safety and efficacy of inactivated African horse sickness (AHS) vaccine formulated with different adjuvants.
van Rijn, Piet A; Maris-Veldhuis, Mieke A; Grobler, Miemie; Wright, Isabel M; Erasmus, Baltus J; Maartens, Louis H; Potgieter, Christiaan A.
Afiliação
  • van Rijn PA; Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands; Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa. Electronic address: piet.vanrijn@wur.nl.
  • Maris-Veldhuis MA; Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands.
  • Grobler M; Department of Production Animal Studies, University of Pretoria, South Africa.
  • Wright IM; Deltamune (Pty) Ltd, Moraine house - The Braes, 193 Bryanston Drive, Bryanston, Gauteng 2191, South Africa.
  • Erasmus BJ; Deltamune (Pty) Ltd, Moraine house - The Braes, 193 Bryanston Drive, Bryanston, Gauteng 2191, South Africa.
  • Maartens LH; Deltamune (Pty) Ltd, Moraine house - The Braes, 193 Bryanston Drive, Bryanston, Gauteng 2191, South Africa.
  • Potgieter CA; Deltamune (Pty) Ltd, Moraine house - The Braes, 193 Bryanston Drive, Bryanston, Gauteng 2191, South Africa; Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.
Vaccine ; 38(45): 7108-7117, 2020 10 21.
Article em En | MEDLINE | ID: mdl-32921506
ABSTRACT
African horse sickness virus (AHSV) is a virus species in the genus Orbivirus of the family Reoviridae causing African Horse Sickness (AHS) in equids with a mortality of about 95% in naïve horses. AHS causes serious losses in developing countries where horses play a central role in draft power and transportation. There are nine AHSV serotypes inducing no or low cross-neutralizing antibodies. AHSV is spread by biting Culicoides midges. AHS is endemic in sub-Saharan Africa, and a serious threat outside Africa, since Culicoides species in moderate climate conditions are spreading the closely related bluetongue virus. AHS outbreaks will be devastating for the equestrian industry in developed countries. Live-attenuated vaccines (LAVs) are licensed, marketed and in use in Africa. Their application is controversial with regard to safety issues. LAVs are not allowed in AHS-free countries. We here studied inactivated AHSV with different adjuvants in guinea pigs and horses. Subcutaneous and intramuscular vaccination were studied in horses. Local reactions were observed after prime and boost vaccination. In general, neutralizing antibodies (nAbs) titres were very low after prime vaccination, whereas boost vaccination resulted in high nAb titres for some adjuvants. Vaccinated horses were selected based on local reactions and nAb titres to study efficacy. Unfortunately, not all vaccinated horses survived virulent AHSV infection. Further, most survivors temporarily developed clinical signs and viremia. Further, the current prototype inactivated AHS vaccine is not suitable as emergency vaccine, because onset of protection is slow and requires boost vaccinations. On the other hand, inactivated AHS vaccine is completely safe with respect to virus spread, and incorporation of the DIVA principle based on NS3/NS3a serology and exploring a vaccine production platform for other serotypes is feasible. A superior adjuvant increasing the protective response without causing local reactions will be required to develop payable and acceptable inactivated AHS vaccines.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vacinas Virais / Doença Equina Africana / Vírus da Doença Equina Africana Limite: Animals País como assunto: Africa Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vacinas Virais / Doença Equina Africana / Vírus da Doença Equina Africana Limite: Animals País como assunto: Africa Idioma: En Ano de publicação: 2020 Tipo de documento: Article