Your browser doesn't support javascript.
loading
The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism.
Du, Zhipo; Feng, Xinxing; Cao, Guangxiu; She, Zhending; Tan, Rongwei; Aifantis, Katerina E; Zhang, Ruihong; Li, Xiaoming.
Afiliação
  • Du Z; Department of Orthopedics, The Fourth Central Hospital of Baoding City, Baoding, 072350, China.
  • Feng X; Endocrinology and Cardiovascular Disease Centre, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
  • Cao G; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
  • She Z; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.
  • Tan R; Guangdong Engineering Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials Co., Ltd., Shenzhen, 518107, China.
  • Aifantis KE; Guangdong Engineering Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials Co., Ltd., Shenzhen, 518107, China.
  • Zhang R; Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA.
  • Li X; Department of Research and Teaching, The Fourth Central Hospital of Baoding City, Baoding, 072350, China.
Bioact Mater ; 6(2): 333-345, 2021 Feb.
Article em En | MEDLINE | ID: mdl-32954052
It has been well recognized that the development and use of artificial materials with high osteogenic ability is one of the most promising means to replace bone grafting that has exhibited various negative effects. The biomimetic features and unique physiochemical properties of nanomaterials play important roles in stimulating cellular functions and guiding tissue regeneration. But efficacy degree of some nanomaterials to promote specific tissue formation is still not clear. We hereby comparatively studied the osteogenic ability of our treated multi-walled carbon nanotubes (MCNTs) and the main inorganic mineral component of natural bone, nano-hydroxyapatite (nHA) in the same system, and tried to tell the related mechanism. In vitro culture of human adipose-derived mesenchymal stem cells (HASCs) on the MCNTs and nHA demonstrated that although there was no significant difference in the cell adhesion amount between on the MCNTs and nHA, the cell attachment strength and proliferation on the MCNTs were better. Most importantly, the MCNTs could induce osteogenic differentiation of the HASCs better than the nHA, the possible mechanism of which was found to be that the MCNTs could activate Notch involved signaling pathways by concentrating more proteins, including specific bone-inducing ones. Moreover, the MCNTs could induce ectopic bone formation in vivo while the nHA could not, which might be because MCNTs could stimulate inducible cells in tissues to form inductive bone better than nHA by concentrating more proteins including specific bone-inducing ones secreted from M2 macrophages. Therefore, MCNTs might be more effective materials for accelerating bone formation even than nHA.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article