Your browser doesn't support javascript.
loading
Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism.
Zhang, Jie; Petersen, Søren D; Radivojevic, Tijana; Ramirez, Andrés; Pérez-Manríquez, Andrés; Abeliuk, Eduardo; Sánchez, Benjamín J; Costello, Zak; Chen, Yu; Fero, Michael J; Martin, Hector Garcia; Nielsen, Jens; Keasling, Jay D; Jensen, Michael K.
Afiliação
  • Zhang J; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs., Lyngby, Denmark.
  • Petersen SD; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs., Lyngby, Denmark.
  • Radivojevic T; Joint BioEnergy Institute, Emeryville, CA, USA.
  • Ramirez A; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Pérez-Manríquez A; DOE Agile BioFoundry, Emeryville, CA, USA.
  • Abeliuk E; TeselaGen SpA, Santiago, Chile.
  • Sánchez BJ; TeselaGen SpA, Santiago, Chile.
  • Costello Z; TeselaGen Biotechnology, San Francisco, CA, USA.
  • Chen Y; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs., Lyngby, Denmark.
  • Fero MJ; Joint BioEnergy Institute, Emeryville, CA, USA.
  • Martin HG; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Nielsen J; DOE Agile BioFoundry, Emeryville, CA, USA.
  • Keasling JD; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
  • Jensen MK; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.
Nat Commun ; 11(1): 4880, 2020 09 25.
Article em En | MEDLINE | ID: mdl-32978375
ABSTRACT
Through advanced mechanistic modeling and the generation of large high-quality datasets, machine learning is becoming an integral part of understanding and engineering living systems. Here we show that mechanistic and machine learning models can be combined to enable accurate genotype-to-phenotype predictions. We use a genome-scale model to pinpoint engineering targets, efficient library construction of metabolic pathway designs, and high-throughput biosensor-enabled screening for training diverse machine learning algorithms. From a single data-generation cycle, this enables successful forward engineering of complex aromatic amino acid metabolism in yeast, with the best machine learning-guided design recommendations improving tryptophan titer and productivity by up to 74 and 43%, respectively, compared to the best designs used for algorithm training. Thus, this study highlights the power of combining mechanistic and machine learning models to effectively direct metabolic engineering efforts.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Triptofano / Engenharia Metabólica / Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Triptofano / Engenharia Metabólica / Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article