Your browser doesn't support javascript.
loading
Alternative methods for the pilot-scale production and characterization of chitosan nanoparticles.
Alves, Helton José; Gasparrini, Lázaro José; Silva, Felipe Eduardo Bueno; Caciano, Laressa; de Muniz, Graciela Ines Bolzon; Ballester, Eduardo Luis Cupertino; Cremonez, Paulo André; Arantes, Mabel Karina.
Afiliação
  • Alves HJ; Laboratory of Materials and Renewable Energy (LABMATER), Department of Engineering and Exact, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil.
  • Gasparrini LJ; Laboratory of Materials and Renewable Energy (LABMATER), Department of Engineering and Exact, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil.
  • Silva FEB; Laboratory of Materials and Renewable Energy (LABMATER), Department of Engineering and Exact, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil.
  • Caciano L; Laboratory of Materials and Renewable Energy (LABMATER), Department of Engineering and Exact, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil.
  • de Muniz GIB; Department of Forest Engineering and Technology, Federal University of Paraná, Av. Pref. Lothario Meissner, 900, Jardim Botânico, Curitiba, PR, 80210-170, Brazil.
  • Ballester ELC; Laboratory of Shrimp (LABCAR), Department of Zootechnics, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil.
  • Cremonez PA; Laboratory of Materials and Renewable Energy (LABMATER), Department of Engineering and Exact, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil. pa.cremonez@gmail.com.
  • Arantes MK; Laboratory of Materials and Renewable Energy (LABMATER), Department of Engineering and Exact, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil.
Environ Sci Pollut Res Int ; 28(9): 10977-10987, 2021 Mar.
Article em En | MEDLINE | ID: mdl-33106907
ABSTRACT
This work describes the production/characterization of low molar mass chitosan nanoparticles derived from waste shrimp shells (SSC), as well as from a commercial chitosan (CC). The production of low molar mass nanochitosan employed thermal shock, alternating between 100 °C and ambient temperature, followed by grinding the dry material (SSC and CC) in a ball mill, producing around 500 g of nanochitosan per batch. A highlight of the methodology employed is that it enables nanochitosan to be obtained even from a low quality commercial raw material. All particles had diameters smaller than 223 nm, with an average diameter below 25 nm (determined by DLS), while reductions of molar mass were between 8.4-fold and 13.5-fold. The depolymerization process resulted in a reduction in crystallinity of 38.1 to 25.4% and 55.6 to 25.9% in the CC and SSC samples, respectively. The production of nanochitosans was also confirmed by TEM through the observation of crystalline domains with diameters between 5 and 10 nm. This work perfectly reproduces the results on bench scale from previous research. The simple and inexpensive processes enable easy scale-up, representing an important advance in the production chain of biopolymers. Graphical abstract.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Quitosana / Nanopartículas Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Quitosana / Nanopartículas Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article