Your browser doesn't support javascript.
loading
Transfer and Enzyme-Mediated Metabolism of Oxidized Phosphatidylcholine and Lysophosphatidylcholine between Low- and High-Density Lipoproteins.
Sawada, Naoko; Obama, Takashi; Mizuno, Mirei; Fukuhara, Kiyoshi; Iwamoto, Sanju; Aiuchi, Toshihiro; Makiyama, Tomohiko; Itabe, Hiroyuki.
Afiliação
  • Sawada N; Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
  • Obama T; Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
  • Mizuno M; Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
  • Fukuhara K; Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
  • Iwamoto S; Division of Physiology and Pathology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
  • Aiuchi T; Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
  • Makiyama T; Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
  • Itabe H; Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
Antioxidants (Basel) ; 9(11)2020 Oct 26.
Article em En | MEDLINE | ID: mdl-33114515
ABSTRACT
Oxidized low-density lipoprotein (oxLDL) and oxidized high-density lipoprotein (oxHDL), known as risk factors for cardiovascular disease, have been observed in plasma and atheromatous plaques. In a previous study, the content of oxidized phosphatidylcholine (oxPC) and lysophosphatidylcholine (lysoPC) species stayed constant in isolated in vivo oxLDL but increased in copper-induced oxLDL in vitro. In this study, we prepared synthetic deuterium-labeled 1-palmitoyl lysoPC and palmitoyl-glutaroyl PC (PGPC), a short chain-oxPC to elucidate the metabolic fate of oxPC and lysoPC in oxLDL in the presence of HDL. When LDL preloaded with d13-lysoPC was mixed with HDL, d13-lysoPC was recovered in both the LDL and HDL fractions equally. d13-LysoPC decreased by 50% after 4 h of incubation, while d13-PC increased in both fractions. Diacyl-PC production was abolished by an inhibitor of lecithin-cholesterol acyltransferase (LCAT). When d13-PGPC-preloaded LDL was incubated with HDL, d13-PGPC was transferred to HDL in a dose-dependent manner when both LCAT and lipoprotein-associated phospholipase A2 (Lp-PLA2) were inhibited. Lp-PLA2 in both HDL and LDL was responsible for the hydrolysis of d13-PGPC. These results suggest that short chain-oxPC and lysoPC can transfer between lipoproteins quickly and can be enzymatically converted from oxPC to lysoPC and from lysoPC to diacyl-PC in the presence of HDL.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article