Your browser doesn't support javascript.
loading
Physicochemical Stability of Enriched Phenolic Fractions of Cyclopia genistoides and ex vivo Bi-directional Permeability of Major Xanthones and Benzophenones.
Miller, Neil; Malherbe, Christiaan Johannes; Gerber, Werner; Hamman, Josias H; van der Rijst, Marieta; Aucamp, Marique; Joubert, Elizabeth.
Afiliação
  • Miller N; Plant Bioactives Group, Post-Harvest and Agro-processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa.
  • Malherbe CJ; Department of Food Science, Stellenbosch University, Stellenbosch, South Africa.
  • Gerber W; Plant Bioactives Group, Post-Harvest and Agro-processing Technologies, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa.
  • Hamman JH; Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa.
  • van der Rijst M; Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa.
  • Aucamp M; Biometry Unit, Agricultural Research Council, Stellenbosch, South Africa.
  • Joubert E; School of Pharmacy, University of the Western Cape, Bellville, South Africa.
Planta Med ; 87(4): 325-335, 2021 Apr.
Article em En | MEDLINE | ID: mdl-33142345
Fractions of an ultrafiltered Cyclopia genistoides extract, respectively enriched in xanthones and benzophenones, were previously shown to inhibit mammalian α-glucosidase in vitro. The present study investigated ex vivo intestinal transport of these fractions, using excised porcine jejunal tissue, to determine whether the gut could be a predominant in vivo site of action. The major bioactive compounds, the xanthones (mangiferin, isomangiferin) and benzophenones (3-ß-D-glucopyranosyliriflophenone, 3-ß-D-glucopyranosyl-4-O-ß-D-glucopyranosyliriflophenone) exhibited poor permeation in the absorptive direction with a relatively high efflux ratio (efflux ratio > 1). The efflux ratio of 3-ß-D-glucopyranosyl-4-O-ß-D-glucopyranosyliriflophenone (3.05) was similar to rhodamine 123 (2.99), a known substrate of intestinal P-glycoprotein 1 efflux transporters. Low epithelial membrane transport rates, coupled with efflux mechanisms, would effectively concentrate these bioactive compounds at the target site (gut lumen). Storage stability testing and moisture sorption assays of the xanthone-enriched fraction, benzophenone-enriched fraction, and ultrafiltered Cyclopia genistoides extract were performed to determine their susceptibility to physical and chemical degradation during storage. Hygroscopicity of the powders, indicated by moisture uptake, decreased in the order: benzophenone-enriched fraction (22.7%) > ultrafiltered Cyclopia genistoides extract (14.0%) > xanthone-enriched fraction (10.7%). 3-ß-D-Glucopyranosylmaclurin, a minor benzophenone, was the least stable of the compounds, degrading faster in the benzophenone-enriched fraction than in ultrafiltered Cyclopia genistoides extract, suggesting that the ultrafiltered extract matrix may provide a degree of protection against chemical degradation. Compound degradation during 12 wk of storage at 40 °C in moisture-impermeable containers was best explained by first order reaction kinetics.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Xantonas / Fabaceae Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Xantonas / Fabaceae Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article