Your browser doesn't support javascript.
loading
EEG Microstates Predict Concurrent fMRI Dynamic Functional Connectivity States.
Abreu, Rodolfo; Jorge, João; Leal, Alberto; Koenig, Thomas; Figueiredo, Patrícia.
Afiliação
  • Abreu R; ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
  • Jorge J; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), ICNAS, University of Coimbra, Coimbra, Portugal.
  • Leal A; Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
  • Koenig T; Systems Division, Swiss Center for Electronics and Microtechnology (CSEM), Neuchâtel, Switzerland.
  • Figueiredo P; Department of Neurophysiology, Centro Hospitalar Psiquiátrico de Lisboa, Lisbon, Portugal.
Brain Topogr ; 34(1): 41-55, 2021 01.
Article em En | MEDLINE | ID: mdl-33161518
Brain functional connectivity measured by resting-state fMRI varies over multiple time scales, and recurrent dynamic functional connectivity (dFC) states have been identified. These have been found to be associated with different cognitive and pathological states, with potential as disease biomarkers, but their neuronal underpinnings remain a matter of debate. A number of recurrent microstates have also been identified in resting-state EEG studies, which are thought to represent the quasi-simultaneous activity of large-scale functional networks reflecting time-varying brain states. Here, we hypothesized that fMRI-derived dFC states may be associated with these EEG microstates. To test this hypothesis, we quantitatively assessed the ability of EEG microstates to predict concurrent fMRI dFC states in simultaneous EEG-fMRI data collected from healthy subjects at rest. By training a random forests classifier, we found that the four canonical EEG microstates predicted fMRI dFC states with an accuracy of 90%, clearly outperforming alternative EEG features such as spectral power. Our results indicate that EEG microstates analysis yields robust signatures of fMRI dFC states, providing evidence of the electrophysiological underpinnings of dFC while also further supporting that EEG microstates reflect the dynamics of large-scale brain networks.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Mapeamento Encefálico / Imageamento por Ressonância Magnética Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Mapeamento Encefálico / Imageamento por Ressonância Magnética Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article