Your browser doesn't support javascript.
loading
Ultrasensitive Surface Refractive Index Imaging Based on Quasi-Bound States in the Continuum.
Romano, Silvia; Mangini, Maria; Penzo, Erika; Cabrini, Stefano; De Luca, Anna Chiara; Rendina, Ivo; Mocella, Vito; Zito, Gianluigi.
Afiliação
  • Romano S; Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, Napoli, 80131, Italy.
  • Mangini M; Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, Napoli, 80131, Italy.
  • Penzo E; Molecular Foundry, Lawrence Berkeley National Laboratory, 67 Cyclotron Road, Berkeley, California 94720, United States.
  • Cabrini S; Molecular Foundry, Lawrence Berkeley National Laboratory, 67 Cyclotron Road, Berkeley, California 94720, United States.
  • De Luca AC; Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, Napoli, 80131, Italy.
  • Rendina I; Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, Napoli, 80131, Italy.
  • Mocella V; Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, Napoli, 80131, Italy.
  • Zito G; Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, Napoli, 80131, Italy.
ACS Nano ; 14(11): 15417-15427, 2020 11 24.
Article em En | MEDLINE | ID: mdl-33171041
ABSTRACT
Herein, we demonstrate a cavity-enhanced hyperspectral refractometric imaging using an all-dielectric photonic crystal slab (PhCS). Our approach takes advantage of the synergy between two mechanisms, surface-enhanced fluorescence (SEF) and refractometric sensing, both based on high-Q resonances in proximity of bound states in the continuum (BICs). The enhanced local optical field of the first resonance amplifies of 2 orders of magnitude the SEF emission of a probe dye. Simultaneously, hyperspectral refractometric sensing, based on Fano interference between second mode and fluorescence emission, is used for mapping the spatially variant refractive index produced by the specimen on the PhCS. The spectral matching between first resonance and input laser is modulated by the specimen local refractive index, and thanks to the calibrated dependence with the spectral shift of the Fano resonance, the cavity tuning is used to achieve an enhanced correlative refractometric map with a resolution of 10-5 RIU within femtoliter-scale sampling volumes. This is experimentally applied also on live prostate cancer cells grown on the PhCS, reconstructing enhanced surface refractive index images at the single-cell level. This dual mechanism of quasi-BIC spatially variant gain tracked by quasi-BIC refractometric sensing provides a correlative imaging platform that can find application in many fields for monitoring physical and biochemical processes, such as molecular interactions, chemical reactions, or surface cell analysis.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Refratometria / Óptica e Fotônica Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Refratometria / Óptica e Fotônica Idioma: En Ano de publicação: 2020 Tipo de documento: Article