Your browser doesn't support javascript.
loading
Application of CRISPR-Cas9-Mediated Genome Editing for the Treatment of Myotonic Dystrophy Type 1.
Marsh, Seren; Hanson, Britt; Wood, Matthew J A; Varela, Miguel A; Roberts, Thomas C.
Afiliação
  • Marsh S; University of Oxford Medical School, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK.
  • Hanson B; Department of Physiology, Anatomy and Genetics, Oxford OX1 3QX, UK; Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK.
  • Wood MJA; Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK; MDUK Oxford Neuromuscular Centre, UK.
  • Varela MA; Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK.
  • Roberts TC; Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK; MDUK Oxford Neuromuscular Centre, UK. Electronic address: thomas.roberts@paediatrics.ox.ac.uk.
Mol Ther ; 28(12): 2527-2539, 2020 12 02.
Article em En | MEDLINE | ID: mdl-33171139
ABSTRACT
Myotonic dystrophy type 1 (DM1) is a debilitating multisystemic disorder, caused by expansion of a CTG microsatellite repeat in the 3' untranslated region of the DMPK (dystrophia myotonica protein kinase) gene. To date, novel therapeutic approaches have focused on transient suppression of the mutant, repeat-expanded RNA. However, recent developments in the field of genome editing have raised the exciting possibility of inducing permanent correction of the DM1 genetic defect. Specifically, repurposing of the prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) system has enabled programmable, site-specific, and multiplex genome editing. CRISPR-based strategies for the treatment of DM1 can be applied either directly to patients, or indirectly through the ex vivo modification of patient-derived cells, and they include excision of the repeat expansion, insertion of synthetic polyadenylation signals upstream of the repeat, steric interference with RNA polymerase II procession through the repeat leading to transcriptional downregulation of DMPK, and direct RNA targeting of the mutant RNA species. Potential obstacles to such therapies are discussed, including the major challenge of Cas9 and guide RNA transgene/ribonuclear protein delivery, off-target gene editing, vector genome insertion at cut sites, on-target unintended mutagenesis (e.g., repeat inversion), pre-existing immunity to Cas9 or AAV antigens, immunogenicity, and Cas9 persistence.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Terapia Genética / Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas / Sistemas CRISPR-Cas / Edição de Genes / Proteína 9 Associada à CRISPR / Distrofia Miotônica Limite: Animals / Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Terapia Genética / Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas / Sistemas CRISPR-Cas / Edição de Genes / Proteína 9 Associada à CRISPR / Distrofia Miotônica Limite: Animals / Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article