Your browser doesn't support javascript.
loading
Extracellular Vesicles Released by Enterovirus-Infected EndoC-ßH1 Cells Mediate Non-Lytic Viral Spread.
Netanyah, Eitan; Calafatti, Matteo; Arvastsson, Jeanette; Cabrera-Rode, Eduardo; Cilio, Corrado M; Sarmiento, Luis.
Afiliação
  • Netanyah E; Immunovirology Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, 221 85 Lund, Sweden.
  • Calafatti M; Immunovirology Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, 221 85 Lund, Sweden.
  • Arvastsson J; Immunovirology Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, 221 85 Lund, Sweden.
  • Cabrera-Rode E; Department of Immunology, National Institute of Endocrinology, Vedado 10400, Havana, Cuba.
  • Cilio CM; Immunovirology Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, 221 85 Lund, Sweden.
  • Sarmiento L; Immunovirology Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, 221 85 Lund, Sweden.
Microorganisms ; 8(11)2020 Nov 08.
Article em En | MEDLINE | ID: mdl-33171580
ABSTRACT
While human enteroviruses are generally regarded as a lytic virus, and persistent non-cytolytic enterovirus infection in pancreatic beta cells has been suspected of playing a role in type 1 diabetes pathogenesis. However, it is still unclear how enteroviruses could exit the pancreatic beta cell in a non-lytic manner. This study aimed to investigate the role of beta cell-derived extracellular vesicles (EVs) in the non-lytic enteroviral spread and infection. Size-exclusion chromatography and antibody-based immunoaffinity purification were used to isolate EVs from echovirus 16-infected human beta EndoC-ßH1 cells. EVs were then characterized using transmission electron microscopy and Multiplex Bead-Based Flow Cytometry Assay. Virus production and release were quantified by 50% cell culture infectious dose (CCID50) assay and qRT-PCR. Our results showed that EVs from echovirus 16-infected EndoC-ßH1 cells harbor infectious viruses and promote their spread during the pre-lytic phase of infection. Furthermore, the EVs-mediated infection was not inhibited by virus-specific neutralizing antibodies. In summary, this study demonstrated that enteroviruses could exit beta cells non-lytically within infectious EVs, thereby thwarting the access of neutralizing antibodies to viral particles. These data suggest that enterovirus transmission through EVs may contribute to viral dissemination and immune evasion in persistently infected beta cells.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article