Your browser doesn't support javascript.
loading
Enhanced IL-9 secretion by p66Shc-deficient CLL cells modulates the chemokine landscape of the stromal microenvironment.
Patrussi, Laura; Manganaro, Noemi; Capitani, Nagaja; Ulivieri, Cristina; Tatangelo, Vanessa; Libonati, Francesca; Finetti, Francesca; Frezzato, Federica; Visentin, Andrea; D'Elios, Mario Milco; Trentin, Livio; Semenzato, Gianpietro; Baldari, Cosima T.
Afiliação
  • Patrussi L; Department of Life Sciences, University of Siena, Siena, Italy.
  • Manganaro N; Department of Life Sciences, University of Siena, Siena, Italy.
  • Capitani N; Department of Life Sciences, University of Siena, Siena, Italy.
  • Ulivieri C; Department of Life Sciences, University of Siena, Siena, Italy.
  • Tatangelo V; Department of Life Sciences, University of Siena, Siena, Italy.
  • Libonati F; Department of Life Sciences, University of Siena, Siena, Italy.
  • Finetti F; Department of Life Sciences, University of Siena, Siena, Italy.
  • Frezzato F; Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy.
  • Visentin A; Venetian Institute of Molecular Medicine, Padua, Italy; and.
  • D'Elios MM; Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy.
  • Trentin L; Venetian Institute of Molecular Medicine, Padua, Italy; and.
  • Semenzato G; Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy.
  • Baldari CT; Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy.
Blood ; 137(16): 2182-2195, 2021 04 22.
Article em En | MEDLINE | ID: mdl-33181836
ABSTRACT
The stromal microenvironment is central to chronic lymphocytic leukemia (CLL) pathogenesis. How leukemic cells condition the stroma to enhance its chemoattractant properties remains elusive. Here, we show that mouse and human CLL cells promote the contact-independent stromal expression of homing chemokines. This function was strongly enhanced in leukemic cells from Eµ-TCL1 mice lacking the pro-oxidant p66Shc adaptor, which develop an aggressive disease with organ infiltration. We identified interleukin-9 (IL-9) as the soluble factor, negatively modulated by p66Shc, that is responsible for the chemokine-elevating activity of leukemic cells on stromal cells. IL-9 blockade in Eµ-TCL1/p66Shc-/- mice resulted in a decrease in the nodal expression of homing chemokines, which correlated with decreased leukemic cell invasiveness. IL-9 levels were found to correlate inversely with residual p66Shc in p66Shc-deficient human CLL cells (n = 52 patients). p66Shc reconstitution in CLL cells normalized IL-9 expression and neutralized their chemokine-elevating activity. Notably, high IL-9 expression in CLL cells directly correlates with lymphadenopathy, liver infiltration, disease severity, and overall survival, emerging as an independent predictor of disease outcome. Our results demonstrate that IL-9 modulates the chemokine landscape in the stroma and that p66Shc, by regulating IL-9 expression, fine tunes the ability of leukemic cells to shape the microenvironment, thereby contributing to CLL pathogenesis.

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article