Your browser doesn't support javascript.
loading
Effects and mechanism of gating modifier spider toxins on the hERG channel.
Wang, Yingyi; Luo, Zhengyi; Lei, Sheng; Li, Shuji; Li, Xiaowen; Yuan, Chunhua.
Afiliação
  • Wang Y; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical Univers
  • Luo Z; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical Univers
  • Lei S; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical Univers
  • Li S; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical Univers
  • Li X; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical Univers
  • Yuan C; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical Univers
Toxicon ; 189: 56-64, 2021 Jan 15.
Article em En | MEDLINE | ID: mdl-33212100
Jingzhaotoxin-I, -III, -IV, -XIII, and -35 (JZTX-I, -III, -IV, -XIII, and -35), gating modifier toxins isolated from the venom of the Chinese tarantula Chilobrachys Jingzhao, were reported to act on cardiac sodium channels and Kv channels. JZTX-I and JZTX-XIII inhibited the hERG channel with the IC50 value of 626.9 nM and 612.6 nM, respectively. JZTX-III, -IV, and -35 share high sequence similarity with JZTX-I and JZTX-XIII, but they showed much lower affinity on the hERG channel compared with JZTX-I and JZTX-XIII. The inhibitory potency of the above five toxins on the hERG channel was not in accordance with their affinity on the Nav1.5 and Kv2.1 channels, indicating that the bioactive surfaces of the five toxins interacting with hERG, Nav1.5 and Kv2.1 are at least in part different. Structure-function analysis of the gating modifier toxins suggested that the functional bioactive surface binding to the hERG channel consists of a conserved hydrophobic patch, surrounding acidic residues (Glu10 in JZTX-XIII, Glu11 in JZTX-I), and basic residues which may be different from residues binding to the Kv2.1 channel.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Venenos de Aranha / Canal de Potássio ERG1 Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Venenos de Aranha / Canal de Potássio ERG1 Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article