Your browser doesn't support javascript.
loading
Adding Stochastic Negative Examples into Machine Learning Improves Molecular Bioactivity Prediction.
Cáceres, Elena L; Mew, Nicholas C; Keiser, Michael J.
Afiliação
  • Cáceres EL; Department of Pharmaceutical Chemistry, Department of Bioengineering and Therapeutic Sciences, Bakar Computational Health Sciences Institute, Kavli Institute for Fundamental Neuroscience, Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Ln NS 416A, San Francisco, California 94143, United States.
  • Mew NC; Department of Pharmaceutical Chemistry, Department of Bioengineering and Therapeutic Sciences, Bakar Computational Health Sciences Institute, Kavli Institute for Fundamental Neuroscience, Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Ln NS 416A, San Francisco, California 94143, United States.
  • Keiser MJ; Department of Pharmaceutical Chemistry, Department of Bioengineering and Therapeutic Sciences, Bakar Computational Health Sciences Institute, Kavli Institute for Fundamental Neuroscience, Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Ln NS 416A, San Francisco, California 94143, United States.
J Chem Inf Model ; 60(12): 5957-5970, 2020 12 28.
Article em En | MEDLINE | ID: mdl-33245237
ABSTRACT
Multitask deep neural networks learn to predict ligand-target binding by example, yet public pharmacological data sets are sparse, imbalanced, and approximate. We constructed two hold-out benchmarks to approximate temporal and drug-screening test scenarios, whose characteristics differ from a random split of conventional training data sets. We developed a pharmacological data set augmentation procedure, Stochastic Negative Addition (SNA), which randomly assigns untested molecule-target pairs as transient negative examples during training. Under the SNA procedure, drug-screening benchmark performance increases from R2 = 0.1926 ± 0.0186 to 0.4269 ± 0.0272 (122%). This gain was accompanied by a modest decrease in the temporal benchmark (13%). SNA increases in drug-screening performance were consistent for classification and regression tasks and outperformed y-randomized controls. Our results highlight where data and feature uncertainty may be problematic and how leveraging uncertainty into training improves predictions of drug-target relationships.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Aprendizado de Máquina Tipo de estudo: Clinical_trials / Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Aprendizado de Máquina Tipo de estudo: Clinical_trials / Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article