Your browser doesn't support javascript.
loading
Low-dose cadmium stress increases the bioaccumulation and toxicity of dinotefuran enantiomers in zebrafish (Danio rerio)?
Di, Shanshan; Qi, Peipei; Wu, Shenggan; Wang, Zhiwei; Zhao, Huiyu; Zhao, Xueping; Wang, Xiangyun; Xu, Hao; Wang, Xinquan.
Afiliação
  • Di S; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR Ch
  • Qi P; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR Ch
  • Wu S; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR Ch
  • Wang Z; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR Ch
  • Zhao H; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR Ch
  • Zhao X; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR Ch
  • Wang X; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR Ch
  • Xu H; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR Ch
  • Wang X; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR Ch
Environ Pollut ; 269: 116191, 2021 Jan 15.
Article em En | MEDLINE | ID: mdl-33316505
ABSTRACT
Co-occurrence of pesticides and heavy metals has attracted extensive attention. The enantioselective behaviors of dinotefuran to aquatic organisms have not been reported, and the effects of cadmium (Cd) was absent, which were investigated in this study at environmentally relevant concentrations. The enantioselective accumulation and elimination of dinotefuran enantiomers were observed in zebrafish, and it had tissue specificity. The S-dinotefuran concentrations were higher than R-dinotefuran in heads and viscera, but it was opposite in muscles. There existed competition between S-dinotefuran and R-dinotefuran, and the existence of S-dinotefuran might decrease the accumulation and elimination of the R-dinotefuran in zebrafish. When co-exposure to Cd and dinotefuran, the accumulation concentrations of dinotefuran enantiomers increased in zebrafish at the initial stage, which were opposite latterly. The accumulation concentrations of R-dinotefuran in R + Cd treatment in fish were 3.4 times higher than those in R-dinotefuran treatment, and the enantiomer fraction (EF) values changed from 0.484 to 0.195. The oxidative stress of S-dinotefuran on zebrafish was highest, followed by rac- and R-dinotefuran. Co-exposure to Cd led to toxicity increase for R-dinotefuran, the malonaldehyde (MDA) content decreased significantly in R + Cd treatment during 7-28 days, while obvious declination of MDA contents was found on the 28th day in R-dinotefuran treatment. Furthermore, compared to R-dinotefuran treatment, Cd increased the relative expression of cz-sod (3.4 times), cas3 (1.6 times) and p53 (5.7 times) in R + Cd treatment. The co-exposure of Cd might alter the environmental behaviors and toxicity effects of dinotefuran enantiomers in zebrafish, including the enantioselectivity. The effects of Cd on accumulation and toxicity of R-dinotefuran were greater than those on S-dinotefuran. Thus, it is necessary to consider the effects of coexistent metals to chiral pesticides in ecological risk. SUMMARIZES The enantioselective accumulation and elimination of dinotefuran enantiomers had tissue specificity. Cd increased the accumulation and toxicity of R-dinotefuran in zebrafish.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Peixe-Zebra Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Peixe-Zebra Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article