Path Following Control for Underactuated Airships with Magnitude and Rate Saturation.
Sensors (Basel)
; 20(24)2020 Dec 15.
Article
em En
| MEDLINE
| ID: mdl-33333882
This paper proposes a reinforcement learning (RL) based path following strategy for underactuated airships with magnitude and rate saturation. The Markov decision process (MDP) model for the control problem is established. Then an error bounded line-of-sight (LOS) guidance law is investigated to restrain the state space. Subsequently, a proximal policy optimization (PPO) algorithm is employed to approximate the optimal action policy through trial and error. Since the optimal action policy is generated from the action space, the magnitude and rate saturation can be avoided. The simulation results, involving circular, general, broken-line, and anti-wind path following tasks, demonstrate that the proposed control scheme can transfer to new tasks without adaptation, and possesses satisfying real-time performance and robustness.
Texto completo:
1
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article