Your browser doesn't support javascript.
loading
High-Dimensional Analysis of Single-Cell Flow Cytometry Data Predicts Relapse in Childhood Acute Lymphoblastic Leukaemia.
Chulián, Salvador; Martínez-Rubio, Álvaro; Pérez-García, Víctor M; Rosa, María; Blázquez Goñi, Cristina; Rodríguez Gutiérrez, Juan Francisco; Hermosín-Ramos, Lourdes; Molinos Quintana, Águeda; Caballero-Velázquez, Teresa; Ramírez-Orellana, Manuel; Castillo Robleda, Ana; Fernández-Martínez, Juan Luis.
Afiliação
  • Chulián S; Department of Mathematics, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain.
  • Martínez-Rubio Á; Biomedical Research and Innovation Institute of Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain.
  • Pérez-García VM; Department of Mathematics, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain.
  • Rosa M; Biomedical Research and Innovation Institute of Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain.
  • Blázquez Goñi C; Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.
  • Rodríguez Gutiérrez JF; Instituto de Matemática Aplicada a la Ciencia y la Ingeniería (IMACI), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.
  • Hermosín-Ramos L; ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.
  • Molinos Quintana Á; Department of Mathematics, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain.
  • Caballero-Velázquez T; Biomedical Research and Innovation Institute of Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain.
  • Ramírez-Orellana M; Department of Paediatric Haematology and Oncology, 11407 Hospital de Jerez Cádiz, Spain.
  • Castillo Robleda A; Department of Paediatric Haematology and Oncology, 11407 Hospital de Jerez Cádiz, Spain.
  • Fernández-Martínez JL; Department of Paediatric Haematology and Oncology, 11407 Hospital de Jerez Cádiz, Spain.
Cancers (Basel) ; 13(1)2020 Dec 23.
Article em En | MEDLINE | ID: mdl-33374500
Artificial intelligence methods may help in unveiling information that is hidden in high-dimensional oncological data. Flow cytometry studies of haematological malignancies provide quantitative data with the potential to be used for the construction of response biomarkers. Many computational methods from the bioinformatics toolbox can be applied to these data, but they have not been exploited in their full potential in leukaemias, specifically for the case of childhood B-cell Acute Lymphoblastic Leukaemia. In this paper, we analysed flow cytometry data that were obtained at diagnosis from 56 paediatric B-cell Acute Lymphoblastic Leukaemia patients from two local institutions. Our aim was to assess the prognostic potential of immunophenotypical marker expression intensity. We constructed classifiers that are based on the Fisher's Ratio to quantify differences between patients with relapsing and non-relapsing disease. We also correlated this with genetic information. The main result that arises from the data was the association between subexpression of marker CD38 and the probability of relapse.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article