Your browser doesn't support javascript.
loading
QSAR-assisted-MMPA to expand chemical transformation space for lead optimization.
Fu, Li; Yang, Zi-Yi; Yang, Zhi-Jiang; Yin, Ming-Zhu; Lu, Ai-Ping; Chen, Xiang; Liu, Shao; Hou, Ting-Jun; Cao, Dong-Sheng.
Afiliação
  • Fu L; Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China.
  • Yang ZY; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, P. R. China.
  • Yang ZJ; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, P. R. China.
  • Yin MZ; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, P. R. China.
  • Lu AP; Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China.
  • Chen X; Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, P. R China.
  • Liu S; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
  • Hou TJ; Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China.
  • Cao DS; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.
Brief Bioinform ; 22(5)2021 09 02.
Article em En | MEDLINE | ID: mdl-33418563
Matched molecular pairs analysis (MMPA) has become a powerful tool for automatically and systematically identifying medicinal chemistry transformations from compound/property datasets. However, accurate determination of matched molecular pair (MMP) transformations largely depend on the size and quality of existing experimental data. Lack of high-quality experimental data heavily hampers the extraction of more effective medicinal chemistry knowledge. Here, we developed a new strategy called quantitative structure-activity relationship (QSAR)-assisted-MMPA to expand the number of chemical transformations and took the logD7.4 property endpoint as an example to demonstrate the reliability of the new method. A reliable logD7.4 consensus prediction model was firstly established, and its applicability domain was strictly assessed. By applying the reliable logD7.4 prediction model to screen two chemical databases, we obtained more high-quality logD7.4 data by defining a strict applicability domain threshold. Then, MMPA was performed on the predicted data and experimental data to derive more chemical rules. To validate the reliability of the chemical rules, we compared the magnitude and directionality of the property changes of the predicted rules with those of the measured rules. Then, we compared the novel chemical rules generated by our proposed approach with the published chemical rules, and found that the magnitude and directionality of the property changes were consistent, indicating that the proposed QSAR-assisted-MMPA approach has the potential to enrich the collection of rule types or even identify completely novel rules. Finally, we found that the number of the MMP rules derived from the experimental data could be amplified by the predicted data, which is helpful for us to analyze the medicinal chemical rules in local chemical environment. In summary, the proposed QSAR-assisted-MMPA approach could be regarded as a very promising strategy to expand the chemical transformation space for lead optimization, especially when no enough experimental data can support MMPA.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Drogas em Investigação / Química Farmacêutica / Modelos Estatísticos / Descoberta de Drogas / Técnicas de Química Sintética Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Drogas em Investigação / Química Farmacêutica / Modelos Estatísticos / Descoberta de Drogas / Técnicas de Química Sintética Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article