Your browser doesn't support javascript.
loading
Investigations of CO2 Capture from Gas Mixtures Using Porous Liquids.
Yin, Zhijian; Chen, Houyang; Yang, Li; Peng, Changjun; Qin, Yuanhang; Wang, Tielin; Sun, Wei; Wang, Cunwen.
Afiliação
  • Yin Z; Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.
  • Chen H; Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, United States.
  • Yang L; Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.
  • Peng C; School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
  • Qin Y; Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.
  • Wang T; Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.
  • Sun W; Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.
  • Wang C; Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.
Langmuir ; 37(3): 1255-1266, 2021 Jan 26.
Article em En | MEDLINE | ID: mdl-33443439
ABSTRACT
Porous liquids, a new porous material with fluidity, can be applied in numerous fields, such as gas storage and/or separation. In this work, the separation of binary gas mixtures CO2/N2 and CO2/CH4 with porous liquids was examined by molecular dynamics (MD) simulations. The pure gas adsorption capacity was analyzed with different concentrations of porous liquids. The dependence of the separation effect of a gas mixture on the total pressure and temperature was investigated. Meanwhile, for both CO2/N2 and CO2/CH4 systems, the adsorption and separation effects of porous liquids with a cagesolvent ratio of 112 are better than those of 191 and 1170. The results of the spatial distribution function and/or trajectories indicated that porous liquids prefer CO2, leading to the location of CO2 in the channels formed in porous liquids. However, N2 and CH4 are hardly adsorbed into the bulk. The diffusion of gas molecules follows the order of CO2 > N2 (for CO2/N2) and CH4 > CO2 (for CO2/CH4) in the bulk and N2 > CO2 (for CO2/N2) and CH4 > CO2 (for CO2/CH4) at the interface of porous liquids. Upon increasing the concentrations of porous liquids, the working capacities of CO2 show small decreases in CO2/N2 and CO2/CH4 systems, but the sorbent selection parameters are higher in pressure- and temperature-swing adsorption processes. The porous liquid with a cagesolvent ratio of 112 is more suitable for the separation of CO2/N2 and CO2/CH4 systems than ratios of 191 and 1170.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article