Your browser doesn't support javascript.
loading
Characterizing the impact of Three Gorges Dam on the Changjiang (Yangtze River): A story of nitrogen biogeochemical cycling through the lens of nitrogen stable isotopes.
Grabb, Kalina C; Ding, Shuai; Ning, Xiaoyan; Liu, Su Mei; Qian, Bao.
Afiliação
  • Grabb KC; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Sc
  • Ding S; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Sc
  • Ning X; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Sc
  • Liu SM; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Sc
  • Qian B; Bureau of Hydrology, Changjiang Water Resources Commission, Wuhan, 430010, China.
Environ Res ; 195: 110759, 2021 04.
Article em En | MEDLINE | ID: mdl-33497682
ABSTRACT
The alterations of nitrogen sources and cycling within the Three Gorges Reservoir (TGR) and downstream the Changjiang were investigated to understand the impacts of the construction of the Three Gorges Dam (TGD) and anthropogenic inputs from the associated watershed. Water samples collected in October 2016 were analyzed for hydrologic parameters, nutrient concentrations, and stable isotopes of nitrate (NO3-), ammonium (NH4+) and particulate matter. Nitrate dual stable isotope values ranged from +5.8‰ to +7.1‰ and -1.9‰ to +0.4‰ for δ15N and δ18O, respectively. δ15N values in particulate nitrogen (PN) ranged from +0.5‰ to +8.5‰, with slightly lower values before the dam. δ15N-NH4+ values ranged between +10.5‰ and +19.4‰, likely reflecting the presence of ammonium assimilation throughout the TGR. The contribution of different nitrogen sources was calculated using a Bayesian mixing model. These sources, including soil organic nitrogen, ammonium fertilizer, and sewage effluent, contributed to elevated DIN concentrations within the TGR (83.2 µM-178.5 µM). The construction of the dam has also likely induced changes in the river environment such as ammonium assimilation in the surface waters and nitrification and/or remineralization within the deep waters of the TGR. Overall, during this investigation period, the TGR acted as a sink of PN (retaining 29%), yet negligibly influenced levels of TDN with ~96.5% of TDN exported to the downstream Changjiang and estuary. It is important to understand the long-term impacts of the TGD on the ecological environment of the Changjiang. This study highlights the influence that anthropogenic nitrogen sources have on the natural biogeochemical cycling within the TGR, showing the urgent need to reduce anthropogenic nitrogen pollution.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Monitoramento Ambiental Tipo de estudo: Prognostic_studies País como assunto: Asia Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Monitoramento Ambiental Tipo de estudo: Prognostic_studies País como assunto: Asia Idioma: En Ano de publicação: 2021 Tipo de documento: Article