Your browser doesn't support javascript.
loading
Glutathione S-Transferase P Influences Redox Homeostasis and Response to Drugs that Induce the Unfolded Protein Response in Zebrafish.
Zhang, Leilei; Kim, Seok-Hyung; Park, Ki-Hoon; Zhi-Wei, Ye; Jie, Zhang; Townsend, Danyelle M; Tew, Kenneth D.
Afiliação
  • Zhang L; Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmac
  • Kim SH; Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmac
  • Park KH; Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmac
  • Zhi-Wei Y; Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmac
  • Jie Z; Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmac
  • Townsend DM; Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmac
  • Tew KD; Leilei Zhang, Seok-Hyung Kim, Ki-Hoon Park, Zhi-wei Ye, Jie Zhang, Danyelle M. Townsend, Kenneth D. Tew Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., Z.Y., J.Z., K.D.T.), Division of Nephrology, Department of Medicine (S.-H.K., K.-H.P.), and Department of Pharmac
J Pharmacol Exp Ther ; 377(1): 121-132, 2021 04.
Article em En | MEDLINE | ID: mdl-33514607
ABSTRACT
We have created a novel glutathione S-transferase π1 (gstp1) knockout (KO) zebrafish model and used it for comparative analyses of redox homeostasis and response to drugs that cause endoplasmic reticulum (ER) stress and induce the unfolded protein response (UPR). Under basal conditions, gstp1 KO larvae had higher expression of antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2) accompanied by a more reduced larval environment and a status consistent with reductive stress. Compared with wild type, various UPR markers were decreased in KO larvae, but treatment with drugs that induce ER stress caused greater toxicities and increased expression of Nrf2 and UPR markers in KO. Tunicamycin and 02-{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl}1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate (PABA/nitric oxide) activated inositol-requiring protein-1/X-box binding protein 1 pathways, whereas thapsigargin caused greater activation of protein kinase-like ER kinase/activating transcription factor 4/CHOP pathways. These results suggest that this teleost model is useful for predicting how GSTP regulates organismal management of oxidative/reductive stress and is a determinant of response to drug-induced ER stress and the UPR. SIGNIFICANCE STATEMENT A new zebrafish model has been created to study the importance of glutathione S-transferase π1 in development, redox homeostasis, and response to drugs that enact cytotoxicity through endoplasmic reticulum stress and induction of the unfolded protein response.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Glutationa S-Transferase pi / Resposta a Proteínas não Dobradas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Glutationa S-Transferase pi / Resposta a Proteínas não Dobradas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article