Your browser doesn't support javascript.
loading
Surface functionalization of zeolite-based drug delivery systems enhances their antitumoral activity in vivo.
Vilaça, Natália; Bertão, Ana Raquel; Prasetyanto, Eko Adi; Granja, Sara; Costa, Marta; Fernandes, Rui; Figueiredo, Francisco; Fonseca, António M; De Cola, Luisa; Baltazar, Fátima; Neves, Isabel C.
Afiliação
  • Vilaça N; CQUM, Centre of Chemistry, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
  • Bertão AR; CQUM, Centre of Chemistry, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
  • Prasetyanto EA; Institut de science et d'ingénierie supramoléculaire (ISIS), Université de Strasbourg, 8 Alle Gaspard Monge, Strasbourg, France; Dept. of Pharmacy, Faculty of Medicine, Atma Jaya Catholic University of Indonesia, Jl. Pluit Raya 2, 14440 Jakarta, Indonesia.
  • Granja S; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
  • Costa M; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
  • Fernandes R; i3S - Instituto de Investigação e Inovação em Saúde and HEMS/IBMC - Histology and Electron Microscopy Service, University of Porto, 4200-135 Porto, Portugal.
  • Figueiredo F; i3S - Instituto de Investigação e Inovação em Saúde and HEMS/IBMC - Histology and Electron Microscopy Service, University of Porto, 4200-135 Porto, Portugal.
  • Fonseca AM; CQUM, Centre of Chemistry, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
  • De Cola L; Institut de science et d'ingénierie supramoléculaire (ISIS), Université de Strasbourg, 8 Alle Gaspard Monge, Strasbourg, France.
  • Baltazar F; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal. Electronic address: fbaltazar@med.uminho.pt.
  • Neves IC; CQUM, Centre of Chemistry, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal. Electronic address: ineves@quimica.uminho.pt.
Mater Sci Eng C Mater Biol Appl ; 120: 111721, 2021 Jan.
Article em En | MEDLINE | ID: mdl-33545872
ABSTRACT
Zeolites have attractive features making them suitable carriers for drug delivery systems (DDS). As such, we loaded the anticancer drug 5-fluorouracil (5-FU), into two different zeolite structures, faujasite (NaY) and Linde Type L (LTL), to obtain different DDS. The prepared DDS were tested in vitro using breast cancer, colorectal carcinoma, and melanoma cell lines and in vivo using the chick embryo chorioallantoic membrane model (CAM). Both assays showed the best results for the Hs578T breast cancer cells, with a higher potentiation for 5-FU encapsulated in the zeolite LTL. To unveil the endocytic mechanisms involved in the internalization of the zeolite nanoparticles, endocytosis was inhibited pharmacologically in breast cancer and epithelial mammary human cells. The results suggest that a caveolin-mediated process was responsible for the internalized zeolite nanoparticles. Aiming to boost the DDS efficacy, the disc-shaped zeolite LTL outer surface was functionalized using amino (NH2) or carboxylic acid (COOH) groups and coated with poly-l-lysine (PLL). Positively functionalized surface LTL nanoparticles revealed to be non-toxic to human cells and, importantly, their internalization was faster and led to a higher tumor reduction in vivo. Overall, our results provide further insights into the mechanisms of interaction between zeolite-based DDS and cancer cells, and pave the way for future studies aiming to improve DDS anticancer activity.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Zeolitas / Nanopartículas / Antineoplásicos Limite: Animals / Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Zeolitas / Nanopartículas / Antineoplásicos Limite: Animals / Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article