Your browser doesn't support javascript.
loading
Collision Avoidance Resource Allocation for LoRaWAN.
Chinchilla-Romero, Natalia; Navarro-Ortiz, Jorge; Muñoz, Pablo; Ameigeiras, Pablo.
Afiliação
  • Chinchilla-Romero N; Department of Signal Theory, Telematics and Communications, University of Granada, 18071 Granada, Spain.
  • Navarro-Ortiz J; Department of Signal Theory, Telematics and Communications, University of Granada, 18071 Granada, Spain.
  • Muñoz P; Research Center on Information and Communication Technologies, University of Granada, 18014 Granada, Spain.
  • Ameigeiras P; Department of Signal Theory, Telematics and Communications, University of Granada, 18071 Granada, Spain.
Sensors (Basel) ; 21(4)2021 Feb 09.
Article em En | MEDLINE | ID: mdl-33572272
The number of connected IoT devices is significantly increasing and it is expected to reach more than two dozens of billions of IoT connections in the coming years. Low Power Wide Area Networks (LPWAN) have become very relevant for this new paradigm due to features such as large coverage and low power consumption. One of the most appealing technologies among these networks is LoRaWAN. Although it may be considered as one of the most mature LPWAN platforms, there are still open gaps such as its capacity limitations. For this reason, this work proposes a collision avoidance resource allocation algorithm named the Collision Avoidance Resource Allocation (CARA) algorithm with the objective of significantly increase system capacity. CARA leverages the multichannel structure and the orthogonality of spreading factors in LoRaWAN networks to avoid collisions among devices. Simulation results show that, assuming ideal radio link conditions, our proposal outperforms in 95.2% the capacity of a standard LoRaWAN network and increases the capacity by almost 40% assuming a realistic propagation model. In addition, it has been verified that CARA devices can coexist with LoRaWAN traditional devices, thus allowing the simultaneous transmissions of both types of devices. Moreover, a proof-of-concept has been implemented using commercial equipment in order to check the feasibility and the correct operation of our solution.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article