Your browser doesn't support javascript.
loading
A Smart "Sense-and-Treat" Nanoplatform Based on Semiconducting Polymer Nanoparticles for Precise Photothermal-Photodynamic Combined Therapy.
Bao, Biqing; Su, Peng; Song, Kewei; Cui, Yunxiao; Zhai, Xue; Xu, Yu; Liu, Junle; Wang, Lianhui.
Afiliação
  • Bao B; Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, Jia
  • Su P; Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, Jia
  • Song K; Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, Jia
  • Cui Y; Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, Jia
  • Zhai X; Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, Jia
  • Xu Y; Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, Jia
  • Liu J; Vascular Surgery Division, Karamay Central Hospital of Xinjiang, Karamay, Xinjiang 834000, China.
  • Wang L; Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, Jia
Biomacromolecules ; 22(3): 1137-1146, 2021 03 08.
Article em En | MEDLINE | ID: mdl-33577300
Integrated theranostic nanoplatforms with biomarker recognition and photothermal- and photodynamic (PTT/PDT) therapy is in high demand but remains challenging. Herein, a "sense-and-treat" nanoplatform based on semiconducting polymer nanoparticles (SPNs) for ratiometric bioimaging of phospholipase D (PLD) activity and PTT/PDT combined therapy was proposed. Semiconducting polymer nanoparticles (PSBTBT NPs) serve not only as photothermal agents but also as fluorescent quenchers of Rhodamine B (Rhod B) through a PLD-cleavable linker. Chlorin e6 (Ce6) was used as a photodynamic agent and fluorescence reference. The obtained nanoplatform (PSBTBT-Ce6@Rhod NPs) showed high PDT efficiency and photothermal performance upon single laser irradiation. The PTT/PDT combined therapy achieved more efficient tumor inhibition results as compared with single treatments. In addition, the overexpressed biomarker PLD in tumor tissue will cleave Rhod, leading to the fluorescence recovery of Rhod B and thus allowing the activatable fluorescence imaging of tumor and targeted phototherapy.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fotoquimioterapia / Nanopartículas / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fotoquimioterapia / Nanopartículas / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article