Your browser doesn't support javascript.
loading
APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia.
Sienski, Grzegorz; Narayan, Priyanka; Bonner, Julia Maeve; Kory, Nora; Boland, Sebastian; Arczewska, Aleksandra A; Ralvenius, William T; Akay, Leyla; Lockshin, Elana; He, Liang; Milo, Blerta; Graziosi, Agnese; Baru, Valeriya; Lewis, Caroline A; Kellis, Manolis; Sabatini, David M; Tsai, Li-Huei; Lindquist, Susan.
Afiliação
  • Sienski G; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
  • Narayan P; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
  • Bonner JM; Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
  • Kory N; Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, MD 20814, USA.
  • Boland S; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
  • Arczewska AA; Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
  • Ralvenius WT; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
  • Akay L; Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
  • Lockshin E; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
  • He L; Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
  • Milo B; Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
  • Graziosi A; Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
  • Baru V; Duke University, Durham, NC 27708, USA.
  • Lewis CA; Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
  • Kellis M; Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
  • Sabatini DM; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
  • Tsai LH; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
  • Lindquist S; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
Sci Transl Med ; 13(583)2021 03 03.
Article em En | MEDLINE | ID: mdl-33658354
ABSTRACT
The E4 allele of the apolipoprotein E gene (APOE) has been established as a genetic risk factor for many diseases including cardiovascular diseases and Alzheimer's disease (AD), yet its mechanism of action remains poorly understood. APOE is a lipid transport protein, and the dysregulation of lipids has recently emerged as a key feature of several neurodegenerative diseases including AD. However, it is unclear how APOE4 perturbs the intracellular lipid state. Here, we report that APOE4, but not APOE3, disrupted the cellular lipidomes of human induced pluripotent stem cell (iPSC)-derived astrocytes generated from fibroblasts of APOE4 or APOE3 carriers, and of yeast expressing human APOE isoforms. We combined lipidomics and unbiased genome-wide screens in yeast with functional and genetic characterization to demonstrate that human APOE4 induced altered lipid homeostasis. These changes resulted in increased unsaturation of fatty acids and accumulation of intracellular lipid droplets both in yeast and in APOE4-expressing human iPSC-derived astrocytes. We then identified genetic and chemical modulators of this lipid disruption. We showed that supplementation of the culture medium with choline (a soluble phospholipid precursor) restored the cellular lipidome to its basal state in APOE4-expressing human iPSC-derived astrocytes and in yeast expressing human APOE4 Our study illuminates key molecular disruptions in lipid metabolism that may contribute to the disease risk linked to the APOE4 genotype. Our study suggests that manipulating lipid metabolism could be a therapeutic approach to help alleviate the consequences of carrying the APOE4 allele.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células-Tronco Pluripotentes Induzidas / Doença de Alzheimer Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células-Tronco Pluripotentes Induzidas / Doença de Alzheimer Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article