Your browser doesn't support javascript.
loading
Cooperative genetic networks drive embryonic stem cell transition from naïve to formative pluripotency.
Lackner, Andreas; Sehlke, Robert; Garmhausen, Marius; Giuseppe Stirparo, Giuliano; Huth, Michelle; Titz-Teixeira, Fabian; van der Lelij, Petra; Ramesmayer, Julia; Thomas, Henry F; Ralser, Meryem; Santini, Laura; Galimberti, Elena; Sarov, Mihail; Stewart, A Francis; Smith, Austin; Beyer, Andreas; Leeb, Martin.
Afiliação
  • Lackner A; Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria.
  • Sehlke R; Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
  • Garmhausen M; Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
  • Giuseppe Stirparo G; Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
  • Huth M; Living Systems Institute, University of Exeter, Exeter, UK.
  • Titz-Teixeira F; Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria.
  • van der Lelij P; Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
  • Ramesmayer J; Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria.
  • Thomas HF; Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria.
  • Ralser M; Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria.
  • Santini L; Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
  • Galimberti E; Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria.
  • Sarov M; Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria.
  • Stewart AF; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
  • Smith A; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
  • Beyer A; Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.
  • Leeb M; Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
EMBO J ; 40(8): e105776, 2021 04 15.
Article em En | MEDLINE | ID: mdl-33687089
ABSTRACT
In the mammalian embryo, epiblast cells must exit the naïve state and acquire formative pluripotency. This cell state transition is recapitulated by mouse embryonic stem cells (ESCs), which undergo pluripotency progression in defined conditions in vitro. However, our understanding of the molecular cascades and gene networks involved in the exit from naïve pluripotency remains fragmentary. Here, we employed a combination of genetic screens in haploid ESCs, CRISPR/Cas9 gene disruption, large-scale transcriptomics and computational systems biology to delineate the regulatory circuits governing naïve state exit. Transcriptome profiles for 73 ESC lines deficient for regulators of the exit from naïve pluripotency predominantly manifest delays on the trajectory from naïve to formative epiblast. We find that gene networks operative in ESCs are also active during transition from pre- to post-implantation epiblast in utero. We identified 496 naïve state-associated genes tightly connected to the in vivo epiblast state transition and largely conserved in primate embryos. Integrated analysis of mutant transcriptomes revealed funnelling of multiple gene activities into discrete regulatory modules. Finally, we delineate how intersections with signalling pathways direct this pivotal mammalian cell state transition.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Diferenciação Celular / Redes Reguladoras de Genes / Células-Tronco Embrionárias Murinas Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Diferenciação Celular / Redes Reguladoras de Genes / Células-Tronco Embrionárias Murinas Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article