Your browser doesn't support javascript.
loading
Extracellular matrix components and elasticity regulate mouse vaginal epithelial differentiation induced by mesenchymal cells†.
Nakajima, Tadaaki; Kozuma, Miyabi; Hirasawa, Tomoko; Matsunaga, Yukiko T; Tomooka, Yasuhiro.
Afiliação
  • Nakajima T; Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.
  • Kozuma M; Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
  • Hirasawa T; Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.
  • Matsunaga YT; Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.
  • Tomooka Y; Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
Biol Reprod ; 104(6): 1239-1248, 2021 06 04.
Article em En | MEDLINE | ID: mdl-33693507
ABSTRACT
Oviduct, uterus, and vagina are derived from Müllerian ducts. But only in the vagina, the epithelium differentiates into stratified layers. Organ-specific secreted factors derived from the stroma of a neonatal mouse induce epithelial differentiation in the female reproductive tracts. However, the effects of the components and mechanical property of extracellular matrix (ECM) on the regulation of gene expression in the mesenchymal cells of neonatal stroma and differentiation of epithelium in the female reproductive tracts have been overlooked. In the present study, we have developed a simple 3D neonatal vaginal model using clonal cell lines to study the effect of ECM's components and stiffness on the epithelial stratification. Transcriptome analysis was performed by DNA-microarray to identify the components of ECM involved in the differentiation of vaginal epithelial stratification. The knockdown experiment of the candidate genes relating to vaginal epithelial stratification was focused on fibromodulin (Fmod), a collagen cross-linking protein. FMOD was essential for the expression of Bmp4, which encodes secreted factors to induce the epithelial stratification of vaginal mesenchymal cells. Furthermore, stiffer ECM as a scaffold for epithelial cells is necessary for vaginal epithelial stratification. Therefore, the components and stiffness of ECM are both crucial for the epithelial stratification in the neonatal vagina.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vagina / Diferenciação Celular / Regulação da Expressão Gênica no Desenvolvimento / Células Epiteliais / Proteína Morfogenética Óssea 4 / Células-Tronco Mesenquimais / Fibromodulina Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vagina / Diferenciação Celular / Regulação da Expressão Gênica no Desenvolvimento / Células Epiteliais / Proteína Morfogenética Óssea 4 / Células-Tronco Mesenquimais / Fibromodulina Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article