Your browser doesn't support javascript.
loading
Multi-omics approach reveals the contribution of KLU to leaf longevity and drought tolerance.
Jiang, Liang; Yoshida, Takuya; Stiegert, Sofia; Jing, Yue; Alseekh, Saleh; Lenhard, Michael; Pérez-Alfocea, Francisco; Fernie, Alisdair R.
Afiliação
  • Jiang L; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany.
  • Yoshida T; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany.
  • Stiegert S; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany.
  • Jing Y; Department of Genetics, University of Potsdam, 14469 Potsdam, Germany.
  • Alseekh S; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany.
  • Lenhard M; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany.
  • Pérez-Alfocea F; Department of Genetics, University of Potsdam, 14469 Potsdam, Germany.
  • Fernie AR; Department of Plant Nutrition, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain.
Plant Physiol ; 185(2): 352-368, 2021 03 15.
Article em En | MEDLINE | ID: mdl-33721894
KLU, encoded by a cytochrome P450 CYP78A family gene, generates an important-albeit unknown-mobile signal that is distinct from the classical phytohormones. Multiple lines of evidence suggest that KLU/KLU-dependent signaling functions in several vital developmental programs, including leaf initiation, leaf/floral organ growth, and megasporocyte cell fate. However, the interactions between KLU/KLU-dependent signaling and the other classical phytohormones, as well as how KLU influences plant physiological responses, remain poorly understood. Here, we applied in-depth, multi-omics analysis to monitor transcriptome and metabolome dynamics in klu-mutant and KLU-overexpressing Arabidopsis plants. By integrating transcriptome sequencing data and primary metabolite profiling alongside phytohormone measurements, our results showed that cytokinin signaling, with its well-established function in delaying leaf senescence, was activated in KLU-overexpressing plants. Consistently, KLU-overexpressing plants exhibited significantly delayed leaf senescence and increased leaf longevity, whereas the klu-mutant plants showed early leaf senescence. In addition, proline biosynthesis and catabolism were enhanced following KLU overexpression owing to increased expression of genes associated with proline metabolism. Furthermore, KLU-overexpressing plants showed enhanced drought-stress tolerance and reduced water loss. Collectively, our work illustrates a role for KLU in positively regulating leaf longevity and drought tolerance by synergistically activating cytokinin signaling and promoting proline metabolism. These data promote KLU as a potential ideal genetic target to improve plant fitness.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Reguladores de Crescimento de Plantas / Transdução de Sinais / Arabidopsis / Sistema Enzimático do Citocromo P-450 / Citocininas / Proteínas de Arabidopsis / Metaboloma / Transcriptoma Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Reguladores de Crescimento de Plantas / Transdução de Sinais / Arabidopsis / Sistema Enzimático do Citocromo P-450 / Citocininas / Proteínas de Arabidopsis / Metaboloma / Transcriptoma Idioma: En Ano de publicação: 2021 Tipo de documento: Article