Isotactic-Alternating, Heterotactic-Alternating, and ABAA-Type Sequence-Controlled Copolyester Syntheses via Highly Stereoselective and Regioselective Ring-Opening Polymerization of Cyclic Diesters.
J Am Chem Soc
; 143(11): 4421-4432, 2021 03 24.
Article
em En
| MEDLINE
| ID: mdl-33724019
Synthesizing different types of sequence-controlled copolyesters can enrich the diversity of copolyesters and modify their properties more precisely, but it is still a challenge to synthesize a complicated sequence-controlled copolyester using different hydroxy acids in a living polymerization manner. In this work, a highly regioselective and stereoselective catalytic system was developed to synthesize biorenewable and biodegradable copolyesters of mandelic acid and lactic acid with isotactic-alternating, heterotactic-alternating, and ABAA-type precise and complicated sequences. Because of the regular incorporation of mandelic acid into polylactide, these sequence-controlled copolymers of mandelic acid and lactic acid show higher glass-transition temperatures than polylactide and a random copolymer. A stereocomplexation interaction between two opposite enantiomeric isotactic polymer chains was also discovered in the isotactic-alternating copolymer.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article