Your browser doesn't support javascript.
loading
Heavy-ion beam-induced reactive oxygen species and redox reactions.
Matsumoto, Ken-Ichiro; Ueno, Megumi; Shoji, Yoshimi; Nakanishi, Ikuo.
Afiliação
  • Matsumoto KI; Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
  • Ueno M; Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
  • Shoji Y; Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
  • Nakanishi I; Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
Free Radic Res ; 55(4): 450-460, 2021 Apr.
Article em En | MEDLINE | ID: mdl-33729087
Quantification and local density estimation of radiation-induced reactive oxygen species (ROS) were described focusing on our recent and related studies. Charged particle radiation, i.e. heavy-ion beams, are currently utilized for medical treatment. Differences in ROS generation properties between photon and charged particle radiation may lead to differences in the quality of radiation. Radiation-induced generation of ROS in water was quantified using several different approaches to electron paramagnetic resonance (EPR) techniques. Two different densities of localized hydroxyl radical (•OH) generation, i.e. milli-molar and molar levels, were described. Yields of sparse •OH decreased with increasing linear energy transfer (LET), the yield total •OH was not affected by LET. In the high-density, molar level, •OH environment, •OH can react and directly make hydrogen peroxide (H2O2), and then possible to form a high-density H2O2 cluster. The amount of total oxidation reactions caused by oxidative ROS, such as •OH and hydroperoxyl radial (HO2•), was decreased with increasing LET. Possibilities of the sequential reactions were discussed based on the initial localized density at the generated site. Water-induced ROS have been well investigated. However, little is known about radiation-induced free radical generation in lipidic conditions. Radio-chemistry to understand the sequential radio-biological effects is still under development.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Espécies Reativas de Oxigênio / Radical Hidroxila / Peróxido de Hidrogênio Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Espécies Reativas de Oxigênio / Radical Hidroxila / Peróxido de Hidrogênio Idioma: En Ano de publicação: 2021 Tipo de documento: Article