Your browser doesn't support javascript.
loading
Physiological and biochemical effects of Ti3AlC2 nanosheets on rice (Oryza sativa L.).
Jiang, Hao; Li, Yadong; Jin, Qian; Yang, Desong; Wu, Cailan; Cui, Jianghu.
Afiliação
  • Jiang H; College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,
  • Li Y; Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
  • Jin Q; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guang
  • Yang D; College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China.
  • Wu C; College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China. Electronic address: wucailan@shzu.edu.cn.
  • Cui J; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guang
Sci Total Environ ; 770: 145340, 2021 May 20.
Article em En | MEDLINE | ID: mdl-33736383
ABSTRACT
MAX phase materials are a new type of nanomaterial with wide applications, but the potential effects of MAX phase materials on plants have not been reported. Herein, we selected Ti3AlC2 nanosheets as a typical MAX phase material to investigate its potential impacts on rice (Oryza sativa L.) at 0-1000 µg·mL-1. The foliar application of Ti3AlC2 at 100 and 1000 µg·mL-1 inhibited the growth of rice seedlings by producing excess reactive oxygen species (ROS). Furthermore, foliar spraying of Ti3AlC2 at 100 µg·mL-1 decreased the stomatal aperture (78.6%) and increased the number of trichomes (100%). These responses demonstrated that the application of Ti3AlC2 could interfere with the immune system of plants by changing the structure and function of leaves, disturbing the activities of antioxidant enzymes. According to the above results, we concluded that the toxicity of Ti3AlC2 nanosheets on plants was mainly caused by the release of titanium ions. This study provides a valuable reference for understanding the impact of MAX phase materials on plants.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oryza Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oryza Idioma: En Ano de publicação: 2021 Tipo de documento: Article