Your browser doesn't support javascript.
loading
Glycocalyx components affect platelet function, whole blood coagulation, and fibrinolysis: an in vitro study suggesting a link to trauma-induced coagulopathy.
Britten, Martin W; Lümers, Laura; Tominaga, Kenji; Peters, Jürgen; Dirkmann, Daniel.
Afiliação
  • Britten MW; Klinik für Anästhesiologie & Intensivmedizin, University of Duisburg-Essen & University Hospital of Essen, Hufelandstr. 55, 45122, Essen, Germany. Martin.Britten@uk-essen.de.
  • Lümers L; Klinik für Anästhesiologie & Intensivmedizin, University of Duisburg-Essen & University Hospital of Essen, Hufelandstr. 55, 45122, Essen, Germany.
  • Tominaga K; Klinik für Anästhesiologie & Intensivmedizin, University of Duisburg-Essen & University Hospital of Essen, Hufelandstr. 55, 45122, Essen, Germany.
  • Peters J; Present Address: Department of Anesthesiology and Critical Care Medicine, Fukuoka University School of Medicine, Fukuoka, Japan.
  • Dirkmann D; Klinik für Anästhesiologie & Intensivmedizin, University of Duisburg-Essen & University Hospital of Essen, Hufelandstr. 55, 45122, Essen, Germany.
BMC Anesthesiol ; 21(1): 83, 2021 03 19.
Article em En | MEDLINE | ID: mdl-33740916
ABSTRACT

BACKGROUND:

The mechanisms of trauma induced coagulopathy (TIC) are considered multifactorial. Amongst others, however, shedding of the endothelial glycocalyx resulting in increased concentrations of glycocalyx fragments in plasma might also play a role. Thus, we hypothesized that shedded glycocalyx components affect coagulation and may act as humoral mediators of TIC.

METHODS:

To investigate effects of heparan sulfate, chondroitin sulfate, syndecan-1, versican, and thrombomodulin we added these fragments to in vitro assays of whole blood from healthy volunteers to yield concentrations observed in trauma patients. Platelet function, whole blood coagulation, and fibrinolysis were measured by standard coagulation tests, impedance aggregometry (IA), and viscoelastic tests (VET). To assess dose-response relationships, we performed IA with increasing concentrations of versican and VET with increasing concentrations of thrombomodulin.

RESULTS:

Intrinsically activated clotting times (i.e., activated partial thromboplastin time and intrinsically activated VET with and without heparinase) were unaffected by any glycocalyx fragment. Thrombomodulin, however, significantly and dose-dependently diminished fibrinolysis as assessed by VET with exogenously added rt-PA, and increased rt-PA-induced lysis Indices after 30 (up to 108% of control, p <  0,0001), 45 (up to 368% of control, p <  0,0001), and 60 min (up to 950% of control, p <  0,0001) in VET. Versican impaired platelet aggregation in response to arachidonic acid (up to - 37,6%, p <  0,0001), ADP (up to - 14,5%, p <  0,0001), and collagen (up to - 31,8%, p <  0,0001) in a dose-dependent manner, but did not affect TRAP-6 induced platelet aggregation. Clotting time in extrinsically activated VET was shortened by heparan sulfate (- 7,2%, p = 0,024), chondroitin sulfate (- 11,6%, p = 0,016), versican (- 13%, p = 0,012%), and when combined (- 7,2%, p = 0,007).

CONCLUSIONS:

Glycocalyx components exert distinct inhibitory effects on platelet function, coagulation, and fibrinolysis. These data do not support a 'heparin-like auto-anticoagulation' by shed glycosaminoglycans but suggest a possible role of versican in trauma-induced thrombocytopathy and of thrombomodulin in trauma-associated impairment of endogenous fibrinolysis.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tempo de Tromboplastina Parcial / Agregação Plaquetária / Glicocálix / Fibrinólise Limite: Adult / Female / Humans / Male Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tempo de Tromboplastina Parcial / Agregação Plaquetária / Glicocálix / Fibrinólise Limite: Adult / Female / Humans / Male Idioma: En Ano de publicação: 2021 Tipo de documento: Article