Your browser doesn't support javascript.
loading
Sodium Dodecyl Sulfate Modified Carbon Nano Tube Paste Electrode for Sensitive Cyclic Voltammetry Determination of Isatin.
Monnappa, Amrutha Balliamada; Manjunatha, Jamballi Gangadharappa; Bhatt, Aarti Sripathi; Malini, Kodi.
Afiliação
  • Monnappa AB; Department of Chemistry, FMKMC College, Madikeri, Constituent College of Mangalore University, Karnataka, India.
  • Manjunatha JG; Department of Chemistry, N.M.A.M. Institute of Technology, (Visvesvaraya Technological University, Belgavi) Nitte, 574110, Udupi District, Karnataka, India.
  • Bhatt AS; Department of Chemistry, FMKMC College, Madikeri, Constituent College of Mangalore University, Karnataka, India.
  • Malini K; Department of Chemistry, N.M.A.M. Institute of Technology, (Visvesvaraya Technological University, Belgavi) Nitte, 574110, Udupi District, Karnataka, India.
Adv Pharm Bull ; 11(1): 111-119, 2021 Jan.
Article em En | MEDLINE | ID: mdl-33747858
Purpose: Isatin (IS) is a synthetically significant heterocyclic moiety with an influential pharmacodynamic indole nucleus and hence the electrocatalytic property of has been investigated. Methods: The electrochemical analysis was demonstrated by cyclic voltammetry (CV) in the potential window of 0.2 V to 1.4 V using sodium dodecyl sulfate (SDS) modified carbon nano tube paste electrode (SDSMCNTPE) over a pH range of 6 to 8.5 in 0.2 M phosphate buffer solution (PBS). Surface morphology was studied by using Field emission-scanning electron microscopy (FESEM). Results: The CV study discloses that under ideal condition oxidation of IS arises at a potential of 0.970 V accompanied with an exceptional stability, selectivity and sensitivity for the resultant SDSMCNTPE contrasting to bare carbon nano tube paste electrode (BCNTPE). Individual parameters like electrode surface area, effect of surfactant, detection limit, simultaneous detection of IS and resorcinol (RC) were studied at a scan rate of 0.1 V/s. Scan rate study uncovers the process is diffusion controlled. The oxidation peak current amplified linearly with the surge in concentration of IS under ideal condition. Detection limit (LOD) and limit of quantification (LOQ) in the solution of optimum pH (7.5) at a scan rate of 0.100V/s is 2.4×10-7 M and 8.2 × 10-7 M respectively. Conclusion: The proposed electrode portrays excellent repeatability, reproducibility and reliability to resistant electrode fouling.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article