Your browser doesn't support javascript.
loading
Analysis of biomolecules in cochineal dyed archaeological textiles by surface-enhanced Raman spectroscopy.
Celis, F; Segura, C; Gómez-Jeria, J S; Campos-Vallette, M; Sanchez-Cortes, S.
Afiliação
  • Celis F; Laboratorio de Procesos Fotónicos y Electroquímicos, Departamento Disciplinario de Química, Universidad de Playa Ancha, Casilla 34-V, Valparaíso, Chile. freddy.celis@upla.cl.
  • Segura C; Faculty of Sciences, Department of Chemistry, University of Chile, P.O. Box 653, Santiago, Chile.
  • Gómez-Jeria JS; Faculty of Sciences, Department of Chemistry, University of Chile, P.O. Box 653, Santiago, Chile.
  • Campos-Vallette M; Faculty of Sciences, Department of Chemistry, University of Chile, P.O. Box 653, Santiago, Chile.
  • Sanchez-Cortes S; Instituto de Estructura de La Materia, IEM-CSIC, 28006, Madrid, Spain. s.sanchez.cortes@csic.es.
Sci Rep ; 11(1): 6560, 2021 03 22.
Article em En | MEDLINE | ID: mdl-33753838
SERS spectroscopy is successfully employed in this work to reveal different components integrating the cochineal colorant employed for dying archaeological textile samples from the Arica Region in North Chile. This analysis was done by in-situ experiments that does not imply the material (colorant and biomolecules) extraction. The spectroscopic analysis of the archaeological textiles by SERS reveals the presence of bands attributed to carminic acid and nucleobases, mainly adenine and guanine. The identification of these biomolecules was also verified in raw cochineal extract and in cochineal dyed replica wool fibers fabricated by us following ancient receipts. The effect of Al on the complexation of carminic acid and other biomolecules was also tested in order to understand the changes induced by the metal interaction on the colorant structure. This study revealed that Al can also complex biomolecules existing in the cochineal extract. In particular, guanine residue seems to interact strongly with the metal, since SERS bands of this residue are enhanced. Furthermore, a theoretical analysis on the interaction of carminic acid and a silver surface was also performed in order to better understand the interaction mechanism between carminic acid and a metal surface that leads to the final SERS spectrum. The results of the present work will be very useful in the identification of different molecules and metal complexes that may be forming part of the cochineal colorant found in archaeological materials.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article