Your browser doesn't support javascript.
loading
Effective Intratumoral Retention of [103 Pd]AuPd Alloy Nanoparticles Embedded in Gel-Forming Liquids Paves the Way for New Nanobrachytherapy.
Fach, Matthias; Fliedner, Frederikke P; Kempen, Paul J; Melander, Fredrik; Hansen, Anders E; Bruun, Linda M; Köster, Ulli; Sporer, Emanuel; Kjaer, Andreas; Andresen, Thomas L; Jensen, Andreas I; Henriksen, Jonas R.
Afiliação
  • Fach M; DTU Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Ørsteds Plads 345C, Lyngby, 2800, Denmark.
  • Fliedner FP; Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2100, Denmark.
  • Kempen PJ; DTU Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Ørsteds Plads 345C, Lyngby, 2800, Denmark.
  • Melander F; DTU Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Ørsteds Plads 345C, Lyngby, 2800, Denmark.
  • Hansen AE; DTU Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Ørsteds Plads 345C, Lyngby, 2800, Denmark.
  • Bruun LM; Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2100, Denmark.
  • Köster U; DTU Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Ørsteds Plads 345C, Lyngby, 2800, Denmark.
  • Sporer E; Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble, 38042, France.
  • Kjaer A; The Hevesy Laboratory, DTU Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark (DTU), Frederiksborgvej 399, Roskilde, 4000, Denmark.
  • Andresen TL; Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2100, Denmark.
  • Jensen AI; DTU Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Ørsteds Plads 345C, Lyngby, 2800, Denmark.
  • Henriksen JR; The Hevesy Laboratory, DTU Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark (DTU), Frederiksborgvej 399, Roskilde, 4000, Denmark.
Adv Healthc Mater ; 10(10): e2002009, 2021 05.
Article em En | MEDLINE | ID: mdl-33763995
ABSTRACT
Local application of radioactive sources as brachytherapy is well established in oncology. This treatment is highly invasive however, due to the insertion of millimeter sized metal seeds. The authors report the development of a new concept for brachytherapy, based on gold-palladium (AuPd) alloy nanoparticles, intrinsically radiolabeled with 103 Pd. These are formulated in a carbohydrate-ester based liquid, capable of forming biodegradable gel-like implants upon injection. This allows for less invasive administration through small-gauge needles. [103 Pd]AuPd nanoparticles with sizes around 20 nm are prepared with radiolabeling efficiencies ranging from 79% to >99%. Coating with the hydrophobic polymer poly(N-isopropylacrylamide) leads to nanoparticle diameters below 40 nm. Dispersing the nanoparticles in ethanol with water insoluble carbohydrate esters gives "nanogels", a low viscosity liquid capable of solidifying upon injection into aqueous environments. Both nanoparticles and radioactivity are stably retained in the nanogel over 25 days (>99%) after formation in aqueous buffers. Animals bearing CT26 murine tumors are injected intratumorally with 25 MBq of the 103 Pd-nanogel, and display tumor growth delay and significantly increase median survival times compared with control groups. Excellent retention in the tumor of both the 103 Pd and the nanoparticle matrix itself is observed, demonstrating a potential for replacing currently used brachytherapy seeds.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Braquiterapia / Nanopartículas / Nanopartículas Metálicas Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Braquiterapia / Nanopartículas / Nanopartículas Metálicas Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article