Your browser doesn't support javascript.
loading
Quantum computation of dominant products in lithium-sulfur batteries.
Rice, Julia E; Gujarati, Tanvi P; Motta, Mario; Takeshita, Tyler Y; Lee, Eunseok; Latone, Joseph A; Garcia, Jeannette M.
Afiliação
  • Rice JE; IBM Quantum, Almaden Research Center, San Jose, California 95120, USA.
  • Gujarati TP; IBM Quantum, Almaden Research Center, San Jose, California 95120, USA.
  • Motta M; IBM Quantum, Almaden Research Center, San Jose, California 95120, USA.
  • Takeshita TY; Mercedes Benz Research and Development North America, Sunnyvale, California 94085, USA.
  • Lee E; Mercedes Benz Research and Development North America, Sunnyvale, California 94085, USA.
  • Latone JA; IBM Quantum, Almaden Research Center, San Jose, California 95120, USA.
  • Garcia JM; IBM Quantum, Almaden Research Center, San Jose, California 95120, USA.
J Chem Phys ; 154(13): 134115, 2021 Apr 07.
Article em En | MEDLINE | ID: mdl-33832277
ABSTRACT
Quantum chemistry simulations of some industrially relevant molecules are reported, employing variational quantum algorithms for near-term quantum devices. The energies and dipole moments are calculated along the dissociation curves for lithium hydride (LiH), hydrogen sulfide, lithium hydrogen sulfide, and lithium sulfide. In all cases, we focus on the breaking of a single bond to obtain information about the stability of the molecular species being investigated. We calculate energies and a variety of electrostatic properties of these molecules using classical simulators of quantum devices, with up to 21 qubits for lithium sulfide. Moreover, we calculate the ground-state energy and dipole moment along the dissociation pathway of LiH using IBM quantum devices. This is the first example, to the best of our knowledge, of dipole moment calculations being performed on quantum hardware.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article