Your browser doesn't support javascript.
loading
FGF-MAPK signaling regulates human deep-layer corticogenesis.
Gantner, Carlos W; Hunt, Cameron P J; Niclis, Jonathan C; Penna, Vanessa; McDougall, Stuart J; Thompson, Lachlan H; Parish, Clare L.
Afiliação
  • Gantner CW; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia. Electronic address: cg731@cam.ac.uk.
  • Hunt CPJ; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia.
  • Niclis JC; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia.
  • Penna V; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia.
  • McDougall SJ; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia.
  • Thompson LH; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia.
  • Parish CL; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia.
Stem Cell Reports ; 16(5): 1262-1275, 2021 05 11.
Article em En | MEDLINE | ID: mdl-33836146
Despite heterogeneity across the six layers of the mammalian cortex, all excitatory neurons are generated from a single founder population of neuroepithelial stem cells. However, how these progenitors alter their layer competence over time remains unknown. Here, we used human embryonic stem cell-derived cortical progenitors to examine the role of fibroblast growth factor (FGF) and Notch signaling in influencing cell fate, assessing their impact on progenitor phenotype, cell-cycle kinetics, and layer specificity. Forced early cell-cycle exit, via Notch inhibition, caused rapid, near-exclusive generation of deep-layer VI neurons. In contrast, prolonged FGF2 promoted proliferation and maintained progenitor identity, delaying laminar progression via MAPK-dependent mechanisms. Inhibiting MAPK extended cell-cycle length and led to generation of layer-V CTIP2+ neurons by repressing alternative laminar fates. Taken together, FGF/MAPK regulates the proliferative/neurogenic balance in deep-layer corticogenesis and provides a resource for generating layer-specific neurons for studying development and disease.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Córtex Cerebral / Proteínas Quinases Ativadas por Mitógeno / Organogênese / Fatores de Crescimento de Fibroblastos Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Córtex Cerebral / Proteínas Quinases Ativadas por Mitógeno / Organogênese / Fatores de Crescimento de Fibroblastos Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article