Your browser doesn't support javascript.
loading
Erosion of CAD/CAM restorative materials and human enamel: An in vitro study.
Yang, Hui; Lu, Zhi-Cen; Attin, Thomas; Yu, Hao.
Afiliação
  • Yang H; Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China.
  • Lu ZC; Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China.
  • Attin T; Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University Zurich, Zurich, Switzerland.
  • Yu H; Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China; Department of Applied Prosthodontics, Graduate Sc
J Mech Behav Biomed Mater ; 119: 104503, 2021 07.
Article em En | MEDLINE | ID: mdl-33845297
This in vitro study used the same frequency and duration of acid contact as a previous in situ/in vivo study to evaluate the effect of erosion on CAD/CAM restorative materials and human enamel and to compare the effects of in vitro and in situ/in vivo acid challenges on CAD/CAM restorative materials and human enamel. The CAD/CAM restorative materials (IPS e.max CAD, Lava Ultimate, and PMMA block) and human enamel were eroded by immersion in 150 ml of cola drink for 14 days (4 × 5 min/day). The surface microhardness and surface roughness of the specimens were measured at baseline (T1), day 7 (T2), and day 14 (T3). The substance losses were measured at T2 and T3. The data were statistically analyzed using repeated measures ANOVA and Bonferroni's test (α = 0.05). Erosion significantly decreased the surface microhardness of the CAD/CAM restorative materials and human enamel (all P < 0.001). The overall percentage of surface microhardness loss (%SMHl) of the PMMA block and enamel due to in vitro erosion was significantly higher than that due to in situ/in vivo erosion (P = 0.02 and P < 0.001, respectively). Consistent with in situ/in vivo erosion, the surface roughness and profile of the tested restorative materials remained unchanged after in vitro erosion. A significant increase in the surface roughness and substance loss was observed for enamel after in vitro erosion (all P < 0.001). The overall substance loss of enamel due to in vitro erosion was significantly higher than that due to in situ/in vivo erosion (P < 0.001). In conclusion, erosion decreased the surface microhardness of the CAD/CAM restorative materials and human enamel. Moreover, erosion negatively influenced the substance loss and surface roughness of human enamel. For the substance loss of enamel and %SMHl of PMMA block and enamel, the in vitro erosive effects were approximately 1-2 times greater than the in situ/in vivo effects. However, for the surface roughness and profile of the CAD/CAM restorative materials, no significant difference was found between in vitro and in situ/in vivo erosion.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cerâmica / Desenho Assistido por Computador Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cerâmica / Desenho Assistido por Computador Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article