Your browser doesn't support javascript.
loading
Structurally diverse diterpenoids with eight carbon skeletons from Rhododendron micranthum and their antinociceptive effects.
Jin, Pengfei; Zheng, Guijuan; Yuan, Xinghua; Ma, Xiaomin; Feng, Yuanyuan; Yao, Guangmin.
Afiliação
  • Jin P; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Zheng G; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Yuan X; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Ma X; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Feng Y; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
  • Yao G; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China. Electronic address: gyap@mail.hust.edu.cn.
Bioorg Chem ; 111: 104870, 2021 06.
Article em En | MEDLINE | ID: mdl-33845382
ABSTRACT
Seventeen diterpenoids (1-17), classified into eight diverse carbon skeleton types, grayanane (1, 2, and 12), micranthane (3, 4, and 13), mollane (5-7 and 14), 1,5-seco-grayanane (8), kalmane (9-11), 1,5-seco-kalmane (15), A-homo-B-nor-ent-kaurane (16), and leucothane (17), respectively, were isolated from the leaves extract of Rhododendron micranthum. Among them, diterpenoids 1-9 are new compounds and their structures were elucidated via extensive spectroscopic methods, quantum chemical calculations including the 13C NMR-DP4+ analysis and electronic circular dichroism (ECD) calculations, and the single-crystal X-ray diffraction analysis. Micranthanol A (1) represents the first example of a 5αH,9αH-grayanane diterpenoid and a 6-hydroxy-6,10-epoxygrayanane diterpenoid, and micranthanone B (3) is the first 6,10-epoxymicranthane and the 5α-hydroxy-micranthane diterpenoids. 14-epi-Mollanol A (5) and mollanol B (6) represent the first examples of 14ß-hydroxymollane diterpenoids. It is the first time to report mollane, 1,5-seco-kalmane, and A-homo-B-nor-ent-kaurane type diterpenoids from Rhododendron micranthum. All the seventeen diterpenoids showed significant antinociceptive activities at a dose of 5.0 mg/kg, and it is the first time to evaluate the antinociceptive activity of 1,5-seco-kalmane diterpenoid. Among them, compounds 3, 11, 14, and 15 exhibited significant antinociceptive activities even at a lower dose of 1.0 mg/kg. A preliminary structure-activity relationship for the antinociceptive effects of diterpenoids 1-17 is discussed, which provided a new basis to develop novel potent analgesics.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dor / Rhododendron / Diterpenos / Analgésicos Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dor / Rhododendron / Diterpenos / Analgésicos Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article