Your browser doesn't support javascript.
loading
A QTL for conformation of back and croup influences lateral gait quality in Icelandic horses.
Rosengren, Maria K; Sigurðardóttir, Heiðrún; Eriksson, Susanne; Naboulsi, Rakan; Jouni, Ahmad; Novoa-Bravo, Miguel; Albertsdóttir, Elsa; Kristjánsson, Þorvaldur; Rhodin, Marie; Viklund, Åsa; Velie, Brandon D; Negro, Juan J; Solé, Marina; Lindgren, Gabriella.
Afiliação
  • Rosengren MK; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden. maria.rosengren@slu.se.
  • Sigurðardóttir H; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
  • Eriksson S; The Agricultural University of Iceland, Borgarnes, Iceland.
  • Naboulsi R; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
  • Jouni A; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
  • Novoa-Bravo M; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
  • Albertsdóttir E; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
  • Kristjánsson Þ; Genética Animal de Colombia Ltda, Bogotá, Colombia.
  • Rhodin M; The Icelandic Agricultural Advisory Centre, Reykjavík, Iceland.
  • Viklund Å; The Agricultural University of Iceland, Borgarnes, Iceland.
  • Velie BD; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.
  • Negro JJ; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
  • Solé M; School of Life & Environmental Sciences, University of Sydney, Sydney, Australia.
  • Lindgren G; Department of Evolutionary Ecology, Doñana Biological Station, CSIC, Seville, Spain.
BMC Genomics ; 22(1): 267, 2021 Apr 14.
Article em En | MEDLINE | ID: mdl-33853519
BACKGROUND: The back plays a vital role in horse locomotion, where the spine functions as a spring during the stride cycle. A complex interaction between the spine and the muscles of the back contribute to locomotion soundness, gait ability, and performance of riding and racehorses. Conformation is commonly used to select horses for breeding and performance in multiple horse breeds, where the back and croup conformation plays a significant role. The conformation of back and croup plays an important role on riding ability in Icelandic horses. However, the genes behind this trait are still unknown. Therefore, the aim of this study was to identify genomic regions associated with conformation of back and croup in Icelandic horses and to investigate their effects on riding ability. One hundred seventy-seven assessed Icelandic horses were included in the study. A genome-wide association analysis was performed using the 670 K+ Axiom Equine Genotyping Array, and the effects of different haplotypes in the top associated region were estimated for riding ability and additional conformation traits assessed during breeding field tests. RESULTS: A suggestive quantitative trait loci (QTL) for the score of back and croup was detected on Equus caballus (ECA) 22 (p-value = 2.67 × 10- 7). Haplotype analysis revealed two opposite haplotypes, which resulted in higher and lower scores of the back and croup, respectively (p-value < 0.001). Horses with the favorable haplotype were more inclined to have a well-balanced backline with an uphill conformation and had, on average, higher scores for the lateral gaits tölt (p-value = 0.02) and pace (p-value = 0.004). This genomic region harbors three genes: C20orf85, ANKRD60 and LOC100056167. ANKRD60 is associated with body height in humans. C20orf85 and ANKRD60 are potentially linked to adolescent idiopathic scoliosis in humans. CONCLUSIONS: Our results show that the detected QTL for conformation of back and croup is of importance for quality of lateral gaits in Icelandic horses. These findings could result in a genetic test to aid in the selection of breeding horses, thus they are of major interest for horse breeders. The results may also offer a gateway to comparative functional genomics by potentially linking both motor laterality and back inclination in horses with scoliosis in humans.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Locos de Características Quantitativas / Marcha / Cavalos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Locos de Características Quantitativas / Marcha / Cavalos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article