Your browser doesn't support javascript.
loading
Pyrogallol and Fluconazole Interact Synergistically In Vitro against Candida glabrata through an Efflux-Associated Mechanism.
Yao, Dongting; Zhang, Guanyi; Chen, Weiqin; Chen, Jia; Li, Zhen; Zheng, Xin; Yin, Hongmei; Hu, Xiaobo.
Afiliação
  • Yao D; Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  • Zhang G; Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  • Chen W; Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  • Chen J; Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  • Li Z; Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  • Zheng X; Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  • Yin H; Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  • Hu X; Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Antimicrob Agents Chemother ; 65(7): e0010021, 2021 06 17.
Article em En | MEDLINE | ID: mdl-33875436
ABSTRACT
Candida glabrata is currently the first or second most commonly encountered non-albicans Candida species worldwide. The potential severity of Candida resistance mandates the discovery of novel antifungal agents, including those that can be used in combination therapies. In this study, we evaluated the in vitro interactions of pyrogallol (PG) and azole drugs against 22 clinical C. glabrata isolates. The potential mechanism underlying the synergism between PG and fluconazole (FLC) was investigated by the rhodamine 6G efflux method and quantitative reverse transcription (qRT)-PCR analysis. In susceptibility tests, PG showed strong synergism with FLC, itraconazole (ITC), and voriconazole (VRC), with fractional inhibitory concentration index values of 0.18 to 0.375 for PG+FLC, 0.250 to 0.750 for PG+ITC, and 0.141 to 0.750 for PG+VRC. Cells grown in the presence of PG+FLC exhibited reduced rhodamine 6G extrusion and significantly downregulated expression of the efflux-related genes CgCDR1, CgCDR2, and CgPDR1 compared with cells grown in the presence of PG or FLC alone. PG did not potentiate FLC when tested against a ΔCgpdr1 strain. Restoration of a functional CgPDR1 allele also restored the synergism. These results indicate that PG is an antifungal agent that synergistically potentiates the activity of azoles. Furthermore, PG appears to exert its effects by inhibiting efflux pumps and downregulating CgCDR1, CgCDR2, and CgPDR1, with CgPDR1 probably playing a crucial role in this process.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fluconazol / Candida glabrata Tipo de estudo: Risk_factors_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fluconazol / Candida glabrata Tipo de estudo: Risk_factors_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article