Your browser doesn't support javascript.
loading
Targeting myosin 1c inhibits murine hepatic fibrogenesis.
Arif, Ehtesham; Wang, Cindy; Swiderska-Syn, Marzena K; Solanki, Ashish K; Rahman, Bushra; Manka, Paul P; Coombes, Jason D; Canbay, Ali; Papa, Salvatore; Nihalani, Deepak; Aspichueta, Patricia; Lipschutz, Joshua H; Syn, Wing-Kin.
Afiliação
  • Arif E; Department of Medicine, Nephrology Division, Medical University of South Carolinagrid.259828.c, Charleston, South Carolina.
  • Wang C; Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina.
  • Swiderska-Syn MK; Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina.
  • Solanki AK; Department of Pediatrics, Darby Children's Research Institute, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.
  • Rahman B; Department of Medicine, Nephrology Division, Medical University of South Carolinagrid.259828.c, Charleston, South Carolina.
  • Manka PP; Department of Medicine, Nephrology Division, Medical University of South Carolinagrid.259828.c, Charleston, South Carolina.
  • Coombes JD; Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina.
  • Canbay A; Department of Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany.
  • Papa S; Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.
  • Nihalani D; School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
  • Aspichueta P; Department of Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany.
  • Lipschutz JH; Leeds Institute of Medical Research at St. James's, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom.
  • Syn WK; Department of Medicine, Nephrology Division, Medical University of South Carolinagrid.259828.c, Charleston, South Carolina.
Am J Physiol Gastrointest Liver Physiol ; 320(6): G1044-G1053, 2021 06 01.
Article em En | MEDLINE | ID: mdl-33908271
ABSTRACT
Myosin 1c (Myo1c) is an unconventional myosin that modulates signaling pathways involved in tissue injury and repair. In this study, we observed that Myo1c expression is significantly upregulated in human chronic liver disease such as nonalcoholic steatohepatitis (NASH) and in animal models of liver fibrosis. High throughput data from the GEO-database identified similar Myo1c upregulation in mice and human liver fibrosis. Notably, transforming growth factor-ß1 (TGF-ß1) stimulation to hepatic stellate cells (HSCs), the liver pericyte and key cell type responsible for the deposition of extracellular matrix, upregulates Myo1c expression, whereas genetic depletion or pharmacological inhibition of Myo1c blunted TGF-ß-induced fibrogenic responses, resulting in repression of α-smooth muscle actin (α-SMA) and collagen type I α 1 chain (Col1α1) mRNA. Myo1c deletion also decreased fibrogenic processes such as cell proliferation, wound healing response, and contractility when compared with vehicle-treated HSCs. Importantly, phosphorylation of mothers against decapentaplegic homolog 2 (SMAD2) and mothers against decapentaplegic homolog 3 (SMAD3) were significantly blunted upon Myo1c inhibition in GRX cells as well as Myo1c knockout (Myo1c-KO) mouse embryonic fibroblasts (MEFs) upon TGF-ß stimulation. Using the genetic Myo1c-KO mice, we confirmed that Myo1c is critical for fibrogenesis, as Myo1c-KO mice were resistant to carbon tetrachloride (CCl4)-induced liver fibrosis. Histological and immunostaining analysis of liver sections showed that deposition of collagen fibers and α-SMA expression were significantly reduced in Myo1c-KO mice upon liver injury. Collectively, these results demonstrate that Myo1c mediates hepatic fibrogenesis by modulating TGF-ß signaling and suggest that inhibiting this process may have clinical application in treating liver fibrosis.NEW & NOTEWORTHY The incidences of liver fibrosis are growing at a rapid pace and have become one of the leading causes of end-stage liver disease. Although TGF-ß1 is known to play a prominent role in transforming cells to produce excessive extracellular matrix that lead to hepatic fibrosis, the therapies targeting TGF-ß1 have achieved very limited clinical impact. This study highlights motor protein myosin-1c-mediated mechanisms that serve as novel regulators of TGF-ß1 signaling and fibrosis.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Miosina Tipo I / Fibroblastos / Fígado / Cirrose Hepática Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Miosina Tipo I / Fibroblastos / Fígado / Cirrose Hepática Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article