Alteration in antioxidant status in slow and fast alleles of EPHX1 gene polymorphisms among wood workers.
Environ Sci Pollut Res Int
; 28(36): 49678-49684, 2021 Sep.
Article
em En
| MEDLINE
| ID: mdl-33942265
Occupational wood dust exposure may be associated with various health effects, especially in wood industry. These effects may be due to inducing oxidative stress which is related to inflammations. Biochemical assessment of antioxidant enzyme activities illustrated role of oxidative stress (OS) on its depletion. Super oxide dismutase, glutathione peroxidase (GPx) and catalase (CAT) were analyzed in 50 exposed workers and 50 control subjects. Also, macrophage inflammatory protein-2 was assessed among these workers as it was produced upon dust exposure. Microsomal epoxide hydrolase (EPHX1) enzyme shared in the protective mechanism against wood dust oxidative stress. It plays a dual role in the metabolism of environmental pollutants, detoxification, and bioactivation. Gene polymorphisms of EPHX1 may be associated with variations in enzyme activity. Polymorphisms in exons 3 and 4 have resulted in either decreased (slow conjugating allele) or increased (fast conjugating allele) activity in vitro. We aimed to evaluate the associations between EPHX1 polymorphisms and change in antioxidant status (SOD, CAT, and GPx) among wood dust exposed workers. EPHX1 genotyping in exon 3 and exon 4 polymorphisms was carried out by PCR-RFLP. Our result shows a significant reduction in enzymatic antioxidants (SOD, CAT, and GPx) levels with significant rise in MIP-2 levels in worker group. Also, there are significant variations in SOD, CAT, and GPx levels as well as in MIP-2 in different genotypes of EPHX polymorphisms in exon 3 or 4 (specially in Hist-Hist genotypes in both exons). We can conclude an alteration in antioxidant status in both slow and fast allele of EPHX gene polymorphisms with release of MIP-2 protein in wood workers.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Exposição Ocupacional
/
Epóxido Hidrolases
/
Antioxidantes
Limite:
Humans
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article