Your browser doesn't support javascript.
loading
Reducing the impact of radioactivity on quantum circuits in a deep-underground facility.
Cardani, L; Valenti, F; Casali, N; Catelani, G; Charpentier, T; Clemenza, M; Colantoni, I; Cruciani, A; D'Imperio, G; Gironi, L; Grünhaupt, L; Gusenkova, D; Henriques, F; Lagoin, M; Martinez, M; Pettinari, G; Rusconi, C; Sander, O; Tomei, C; Ustinov, A V; Weber, M; Wernsdorfer, W; Vignati, M; Pirro, S; Pop, I M.
Afiliação
  • Cardani L; INFN Sezione di Roma, Roma, Italy. laura.cardani@roma1.infn.it.
  • Valenti F; PHI, Karlsruhe Institute of Technology, Karlsruhe, Germany.
  • Casali N; IPE, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
  • Catelani G; INFN Sezione di Roma, Roma, Italy.
  • Charpentier T; JARA Institute for Quantum Information, Forschungszentrum Jülich, Jülich, Germany.
  • Clemenza M; PHI, Karlsruhe Institute of Technology, Karlsruhe, Germany.
  • Colantoni I; Dipartimento di Fisica, Università di Milano - Bicocca, Milano, Italy.
  • Cruciani A; INFN Sezione di Milano - Bicocca, Milano, Italy.
  • D'Imperio G; INFN Sezione di Roma, Roma, Italy.
  • Gironi L; Istituto di Nanotecnologia, Consiglio Nazionale delle Ricerche, c/o Dip. Fisica, Sapienza Università di Roma, Roma, Italy.
  • Grünhaupt L; INFN Sezione di Roma, Roma, Italy.
  • Gusenkova D; INFN Sezione di Roma, Roma, Italy.
  • Henriques F; Dipartimento di Fisica, Università di Milano - Bicocca, Milano, Italy.
  • Lagoin M; INFN Sezione di Milano - Bicocca, Milano, Italy.
  • Martinez M; PHI, Karlsruhe Institute of Technology, Karlsruhe, Germany.
  • Pettinari G; PHI, Karlsruhe Institute of Technology, Karlsruhe, Germany.
  • Rusconi C; PHI, Karlsruhe Institute of Technology, Karlsruhe, Germany.
  • Sander O; PHI, Karlsruhe Institute of Technology, Karlsruhe, Germany.
  • Tomei C; Fundación ARAID and Centro de Astropartículas y Física de Altas Energías, Universidad de Zaragoza, Zaragoza, Spain.
  • Ustinov AV; Institute for Photonics and Nanotechnologies, National Research Council, Rome, Italy.
  • Weber M; INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy.
  • Wernsdorfer W; Department of Physics and Astronomy, University of South Carolina, Columbia, USA.
  • Vignati M; IPE, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
  • Pirro S; INFN Sezione di Roma, Roma, Italy.
  • Pop IM; PHI, Karlsruhe Institute of Technology, Karlsruhe, Germany.
Nat Commun ; 12(1): 2733, 2021 May 12.
Article em En | MEDLINE | ID: mdl-33980835
ABSTRACT
As quantum coherence times of superconducting circuits have increased from nanoseconds to hundreds of microseconds, they are currently one of the leading platforms for quantum information processing. However, coherence needs to further improve by orders of magnitude to reduce the prohibitive hardware overhead of current error correction schemes. Reaching this goal hinges on reducing the density of broken Cooper pairs, so-called quasiparticles. Here, we show that environmental radioactivity is a significant source of nonequilibrium quasiparticles. Moreover, ionizing radiation introduces time-correlated quasiparticle bursts in resonators on the same chip, further complicating quantum error correction. Operating in a deep-underground lead-shielded cryostat decreases the quasiparticle burst rate by a factor thirty and reduces dissipation up to a factor four, showcasing the importance of radiation abatement in future solid-state quantum hardware.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article