Your browser doesn't support javascript.
loading
Blood microbiota and metabolomic signature of major depression before and after antidepressant treatment: a prospective case-control study.
Ciocan, Dragos; Cassard, Anne-Marie; Becquemont, Laurent; Verstuyft, Céline; Voican, Cosmin Sebastian; El Asmar, Khalil; Colle, Romain; David, Denis; Trabado, Séverine; Feve, Bruno; Chanson, Philippe; Perlemuter, Gabriel; Corruble, Emmanuelle.
Afiliação
  • Ciocan D; From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voic
  • Cassard AM; From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voic
  • Becquemont L; From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voic
  • Verstuyft C; From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voic
  • Voican CS; From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voic
  • El Asmar K; From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voic
  • Colle R; From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voic
  • David D; From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voic
  • Trabado S; From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voic
  • Feve B; From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voic
  • Chanson P; From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voic
  • Perlemuter G; From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voic
  • Corruble E; From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voic
J Psychiatry Neurosci ; 46(3): E358-E368, 2021 05 19.
Article em En | MEDLINE | ID: mdl-34008933
ABSTRACT

Background:

The microbiota interacts with the brain through the gut-brain axis, and a distinct dysbiosis may lead to major depressive episodes. Bacteria can pass through the gut barrier and be found in the blood. Using a multiomic approach, we investigated whether a distinct blood microbiome and metabolome was associated with major depressive episodes, and how it was modulated by treatment.

Methods:

In this case-control multiomic study, we analyzed the blood microbiome composition, inferred bacterial functions and metabolomic profile of 56 patients experiencing a current major depressive episode and 56 matched healthy controls, before and after treatment, using 16S rDNA sequencing and liquid chromatography coupled to tandem mass spectrometry.

Results:

The baseline blood microbiome in patients with a major depressive episode was distinct from that of healthy controls (patients with a major depressive episode had a higher proportion of Janthinobacterium and lower levels of Neisseria) and changed after antidepressant treatment. Predicted microbiome functions confirmed by metabolomic profiling showed that patients who were experiencing a major depressive episode had alterations in the cyanoamino acid pathway at baseline. High baseline levels of Firmicutes and low proportions of Bosea and Tetrasphaera were associated with response to antidepressant treatment. Based on inferred baseline metagenomic profiles, bacterial pathways that were significantly associated with treatment response were related to xenobiotics, amino acids, and lipid and carbohydrate metabolism, including tryptophan and drug metabolism. Metabolomic analyses showed that plasma tryptophan levels are independently associated with response to antidepressant treatment.

Limitations:

Our study has some limitations, including a lack of information on blood microbiome origin and the lack of a validation cohort to confirm our results.

Conclusion:

Patients with depression have a distinct blood microbiome and metabolomic signature that changes after treatment. Dysbiosis could be a new therapeutic target and prognostic tool for the treatment of patients who are experiencing a major depressive episode.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sangue / Transtorno Depressivo Maior / Metaboloma / Disbiose / Microbiota / Eixo Encéfalo-Intestino / Antidepressivos Tipo de estudo: Observational_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sangue / Transtorno Depressivo Maior / Metaboloma / Disbiose / Microbiota / Eixo Encéfalo-Intestino / Antidepressivos Tipo de estudo: Observational_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male Idioma: En Ano de publicação: 2021 Tipo de documento: Article