Your browser doesn't support javascript.
loading
Sustained escitalopram administration affects glucose metabolism in the rat brain.
Perez-Caballero, L; Soto-Montenegro, M L; Desco, M; Mico, J A; Berrocoso, E.
Afiliação
  • Perez-Caballero L; Neuropsychopharmacology & Psychobiology Research Group, Area of Psychobiology, Department of Psychology, University of Cádiz, Cádiz, Spain; CIBER for Mental Health (CIBERSAM), Madrid, Spain.
  • Soto-Montenegro ML; CIBER for Mental Health (CIBERSAM), Madrid, Spain; Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
  • Desco M; CIBER for Mental Health (CIBERSAM), Madrid, Spain; Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Leganés, Spain; Centro Nacional de Investigaci
  • Mico JA; CIBER for Mental Health (CIBERSAM), Madrid, Spain; Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Pharmacology and Psychiatry, University of Cádiz, Cádiz, Spain.
  • Berrocoso E; Neuropsychopharmacology & Psychobiology Research Group, Area of Psychobiology, Department of Psychology, University of Cádiz, Cádiz, Spain; CIBER for Mental Health (CIBERSAM), Madrid, Spain. Electronic address: esther.berrocoso@uca.es.
Eur Neuropsychopharmacol ; 51: 1-6, 2021 10.
Article em En | MEDLINE | ID: mdl-34022746
ABSTRACT
Escitalopram is a selective serotonin reuptake inhibitor (SSRIs) antidepressant, drug that is currently used as first-line agents for the treatment of depression and it is also used in the treatment of other psychiatric disorders. The main goal of this study was to identify which brain areas are affected by escitalopram administration. This study was carried out on male Wistar rats that received escitalopram daily over 14 days and that were studied by 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG)-PET on the last day of treatment. Computed tomography (CT) images were acquired immediately before each PET scan and the main effects of drug administration were elucidated by Statistical Parametric Mapping. The results obtained indicated that repeated exposure to escitalopram increased metabolic activity in the retrosplenial and posterior cingulate cortices, while it decreased such activity in the ventral hippocampus, cerebellum, brainstem and midbrain regions, including the raphe nuclei and ventral tegmental area. Therefore, repeated exposure to escitalopram alters the activity of several brain areas closely related to the serotonergic system, and previously identified as key regions in the antidepressant effect induced by SSRIs. Furthermore, some of the changes found, such as the dampened metabolism in the ventral tegmental area, are similar to changes that have been described after treating with other fast-acting antidepressant approaches.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Citalopram / Escitalopram Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Citalopram / Escitalopram Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2021 Tipo de documento: Article